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ABSTRACT 
Predicting reservoir performance using conventional deterministic models can be 
tasking, especially for very complicated reservoir systems. Our paper presents the use 
of Monte Carlo model for simulations; logic and analysis to achieve useful 
probabilistic stochastic simulations results in a very efficient and visual manner with 
Microsoft excel spreadsheet. A Monte Carlo simulation run was carried out for a 
typical representative reservoir data. The simple Darcy equation was used as the 
deterministic model while the normal distribution model was employed as the 
probabilistic density function model. These models were used to construct a stochastic 
simulation algorithm to predict performance of reservoir systems. Our work analysed 
5000 runs using random inputs. By using random inputs, we are essentially turning the 
deterministic model into a stochastic  model which is then solved iteratively over the 
chosen number of runs. The darcy equation was used as the deterministic model and it 
was evaluated using a single well data from the reservior data table. A comparison of 
the deterministic result [5,219.83], for the single run gave a stochastic value of 
[3,565.34] for the Monte Carlo Simulation [5430.49],  and second run gave a more 
accurate stochastic value [5,234.07], shows that multiple run can achive closeness to 
actual result through the Monte Carlo Method. The result being quite close to the 
deterministic value on second run demonstrated that the Monte Carlo iteration can 
achive a high enough to reliable estimates multiple runs. Various statistical simulators 
were also employed to display the standard deviation of the range of generated data 
from the mean and the standard error was also calculated.  
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Introduction 
In today’s world of oil industries, economic production of oil and gas resources 
requires carefully engineered recovery projects of increasing technical complexity and 
sophistication. Hydrocarbons do not reside in cavernous pools awaiting discovery. 
Rather they are found —sometimes at enormous depths— within the confines of tiny 
pores in rocks. Although the pores may be interconnected, the resulting pathways still 
present a significant resistance to the flow of oil toward a well, drilled into the 
hydrocarbon-bearing strata. In addition, since water resides in some of the pores, 
hydrocarbons and water are recovered simultaneously at the well-head. Thus, even 
when large amounts of oil are known to be in a reservoir, often only a relatively small 
fraction of it can be recovered with conventional pumping technology.  
 
The most common method of enhancing oil recovery, which accounts for much of the 
oil production in the Nigeria, is the injection of water or gas at strategic locations to 
displace the oil toward the production wells. 
Modern recovery projects of this type require very large capital investments. A single 
off-shore well drilled to a depth of 15,000 feet can cost up to $100 million. To be 
successful, a project must have a sizable hydrocarbon target, the promise of extracting 
oil or gas at a sufficiently high rate, a strategy for water separation and disposal, and a 
scheme for transportation to a refinery. As exploration efforts are driven to more 
remote environments, the infrastructure costs for hydrocarbon production escalate. 
Large potential returns are inevitably accompanied by large monetary risk. 
Obviously, economic analysis must be performed before deciding whether a particular 
investment should be made. Computer simulations of reservoir flow performance are 
one of the essential ingredients in the analysis. On the basis of both field and 
laboratory data about the distributions of different rock types and the properties of 
each type, attempt are made to predict the average, or bulk, flow behavior of the fluids 
through the hydrocarbon-bearing rock of a reservoir.  
By the careful application of the knowledge of reservoir and the behavior of the 
contained hydrocarbon at the prevalent conditions, the reservoir engineer seeks to 
manage the reservoir for continuous production of crude oil with a balance between 
efficient and high yielding technology and the economics of the whole operation with 
their environmental implications. From the initial prospecting for oil, to the sinking of 
the wildcat and the developmental wells till the entire life cycle of the oil field is 
experienced and the stage of oil well plugging and field abandonment is attained, the 
knowledge of petroleum reservoir management assist the engineer to monitor the 
wells, decide on production steps and the oil recovery methods to be employed from 
the primary stage to the tertiary level so as ensure maximum take from the pay. 
 
Thus, much effort has been put into developing software systems that allow the use of 
the simulation models to predict performance as well as provide the optimization tools 
and techniques to allow the robust designs to be determined.  
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Figure 1: Reservoir Planning Flow Chart 

Initially, reservoir engineering was considered the only item of technical importance in 
managing a hydrocarbon reservoir. Two key points were emphasized --- clear thinking 
using fundamental reservoir-mechanics concepts and automation using basic 
computers. The other is the concept of managing oil and gas reservoirs which has 
evolved more toward the integration of reservoir engineering with other scientific 
disciplines, namely geology and geophysics (Wyllie, M.R.J., 1962). 

The science of reservoir engineering coupled with computer simulation and prediction 
will continue to evolve; newer and better methods of predicting reservoir behavior will 
be found. Simply recognizing that integration is beneficial will not be sufficient. True, 
integration will require persistence (Satter, A., 1992), while a comprehensive program 
for reservoir management is desirable, every reservoir may not warrant a detailed 
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program because it might not be cost-effective. In these cases, reservoir engineering 
alone or computer simulation may be sufficient. 

The purpose of this paper is to provide an overview and application of a simulation 
technique for reservoir performance prediction. The technique employed a stochastic 
Monte Carlo simulation using measured reservoir data to simulate an acceptable 
degree of performance expectation from the analyzed reservoirs. Comparison were 
also made between the simulated data and actual reservoir values for relevance  
 
Literature Review of Reservoir Models and Simulation Techniques 
In recent years, new techniques have appeared in all areas of simulation, including 
gridding, fluid modeling, numerical approximations, linear solvers, reservoir and 
geological modeling, etc. All of these technical advances are making simulation more 
accurate and realistic, and the simulator more robust, fast, stable, and user-friendly. 
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Gridding  
In the early stages of this technology, all reservoir simulations were performed on 
rectangular Cartesian grid, radial grid was developed later to simulate near well flow. 
Local grid refinement was developed to achieve better accuracy in high flow regions 
(Ciment and Sweet, 1973; Nacul, 1991; Pedrosa and Aziz, 1985). Development of 
corner-point geometry grid (Ponting, 1989; Ding and Lemonnier, 1995; Peaceman, 
1996) made it possible to use non-rectangular gridblocks, providing the capability to 
model faults and other complex geological features. Up to this point, all grids were 
structured, where the neighbors of a gridblock could be easily identified from their i, j, 
k indices. In the last decade, unstructured grids (Heinemann and Brand, 1989; Palagi 
and Aziz, 1994; Gunasekera et al., 1997; Kocberber, 1997; Aavatsmark et al., 1997; 
Verma and Aziz, 1996-1997) were introduced, which can easily force gridblocks to 
conform to major geological features. In unstructured grids, the connections between 
gridblocks are flexible, and a connection list is used to keep track of the connected 
gridblocks. Most unstructured grids are non-orthogonal grids, which often require the 
use of multi-point flux approximations. Today, users can define major reservoir units 
to which the simulation grid must conform, within each unit, the grid can be generated 
automatically with some guiding input from the user (Geoquest, 2000). Automatic 
gridding software packages are becoming available from commercial vendors, such as, 
FloGrid from Geoquest, GOCAD from the GOCAD group and GridPro from Program 
Development Corporation (PDC). 
 
In the last several years, flow based unstructured grids (Agut et al., 1998; Edwards et 
al., 1998; Castellini et al., 2000) have been proposed, which are normally formed by 
generating streamlines and iso-potential lines from a fine grid single-phase simulation. 
Considerable smoothing is required to make the grid suitable for simulation. These 
grids roughly follow major geological features, such as faults, and they are 
concentrated in high flow rate areas, such as wells or high permeability regions. 
Edwards et al. (1998) showed that, if the grids follow the streamlines exactly, the 
multi-point flux calculations can be reduced to two-point flux calculations. 
 
Beside developments in gridding techniques, Lim et al. (1994) proposed a new 
approach to the representation of grid information. In the conventional approach or the 
block-based approach, gridblocks and wells are tracked when computing flux terms. 
While in the new connection based approach, the network of connections are 
considered. A connection always links two nodes; each node can be a gridblock node, 
a well node or a surface facility node. A cell (gridblock) list is used for the calculation 
of accumulation terms, and a connection list is used for the calculation of flux terms. 
This connection-based approach is extremely convenient for unstructured grids, since 
the connection list itself has no structure at all. Besides this, it is also suitable for 
domain decomposition, surface facility modeling (Lim et al., 1994) and multi-point 
flux calculations. 
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2.2 Fluid Modeling  
Initially, all simulations were based on the black-oil fluid model, where the 
hydrocarbon system is represented by two pseudo-components, oil and gas, according 
to their status at standard conditions. In the early 1980s, compositional simulation, 
where the hydrocarbon system is represented by an arbitrary number of components 
and pseudo-components (e.g. Aziz, 1996), became more mature and ready to use. The 
development of compositional simulation makes it possible to simulate volatile oil 
reservoirs, CO2 flooding and other EOR processes. However, compositional 
simulation is much more expensive than black-oil simulation, due to the larger number 
of unknowns per gridblock and complex flash behavior. 
 
2.3 Numerical Approximations  
Conventional simulators use finite-difference methods with two-point flux 
calculations. More recently, multi-point flux calculations (Verma and Aziz, 1996; 
Gunasekera et al., 1998) are becoming more and more common due to the use of full 
tensor permeability (Lee et al., 1994; Lee et al., 1997) and non-orthogonal grids. At the 
same time, control volume methods (Aavatsmark et al., 1997; Verma and Aziz, 1997) 
have become the method of choice for today’s simulator, because of their easy 
handling of unstructured grids. Limited work has also been done on higher-order 
schemes (Sammon, 1991; Chen et al., 1991) and finite element methods (Young, 1978; 
Fung et al., 1991; Sukirman and Lewis, 1994) to achieve higher accuracy. 
2.4 Linear Solver  
Solving the linear system is the single most costly part for a simulation. So it is 
extremely important to have a good linear solver. Initially, direct solvers were used, 
but as the problems have become larger and larger (more and more gridblocks), 
iterative solvers have become more and more common. The performance of iterative 
solvers depends on the quality of preconditioners. In the petroleum industry, most of 
the effort in this area has been on building better preconditioners. Any iterative solver 
can be used as a preconditioner for other iterative solvers, and different 
preconditioners can be combined together to form multistage preconditioners. 
Traditional preconditioners include, Incomplete LU decomposition (ILU) (e.g. Behie 
and Forsyth, 1983), Gauss-Sediel (GS) (e.g. Aziz and Settari, 1979), Algebraic Multi-
Grid (AMG) (Stueben, 1983), etc. Their performance depends strongly on the nature 
of the linear system. For near-elliptic system, AMG works well, for near-hyperbolic 
system; both ILU and GS work well. In reservoir simulation, we have a near-elliptic 
pressure equation and near-hyperbolic saturation equations. For this kind of mixed 
system, none of the single stage preconditioners (ILU, GS, AMG, etc) work well, we 
need a smarter preconditioner. Wallis et al. (1985) introduced the Constrained Pressure 
Residual (CPR) preconditioner, which is specially designed for reservoir simulation 
equations. It uses a two-stage approach to solve the pressure part and the saturation 
part of the reservoir equations separately, which make it the most promising 
preconditioner for fully implicit simulations. Unfortunately, a good preconditioner is 
still missing for the Adaptive Implicit (AIM) Method (Forsyth and Sammon, 1986). 
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Most of the available commercial linear solvers have been designed for structured 
grids, which result in Jacobian matrices with a banded structure. For unstructured 
grids, the Jacobian matrix is a general sparse matrix, and for such systems the existing 
solvers loose their efficiency.  
 
2.5 Reservoir and Geological Modeling  
Reservoir simulations have also expanded in terms of options and features. Modern 
reservoir simulators can simultaneously handle multiple reservoirs, surface facilities 
(Schiozer and Aziz, 1994; Byer, 2000) and rock mechanics. Furthermore, there is more 
and more cooperation among reservoir engineer, geologist and geophysicist to achieve 
more realistic modeling of reservoir geology for simulation projects (e.g. Journel, 
1990; Ballin et al., 1993).  
 
With all of these developments in simulation technology and computers, the simulator 
has also reached a new stage. Today’s simulator is more robust, more complex, and 
easier to use than what was available 20 years ago. Because of all the features that are 
required in a modern simulator, it takes more time to develop a simulator and more 
effort to maintain it. In the future, simulators will be required to solve even more 
complex problems than they can handle today. Under these circumstances, a good 
design for the simulator is vital. Fortunately, today we have all kinds of design tools 
and suitable computer languages to develop technology to meet the future needs of the 
industry. Research students working in this area need a lot of time to program the basic 
simulator before they can even start to explore research topics of interest to them. 
Also, after a student leaves most of his/her development becomes unusable within a 
short time, due to lack of good design and documentation. Hence developing a good 
environment for simulation research has become essential for a research group. 
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STATISTICAL SIMULATION TECHNIQUE: MONTE CARLO 

Numerical methods that are known as Monte Carlo methods can be loosely described 
as statistical simulation methods, where statistical simulation is defined in quite 
general terms to be any method that utilizes sequences of random numbers to perform 
the simulation. Monte Carlo is now used routinely in many diverse fields, from the 
simulation of complex physical phenomena such as radiation transport in the earth's 
atmosphere and the simulation of the esoteric sub-nuclear processes in high energy 
physics experiments. 

PROBABILITY DENSITY FUNCTIONS [PDFs] 

Statistical simulation methods may be contrasted to conventional numerical 
discretization methods applied to ordinary or partial differential equations that describe 
some underlying physical or mathematical system. In many applications of Monte 
Carlo, the physical process is simulated directly, and there is no need to even write 
down the differential equations that describe the behavior of the system. The only 
requirement is that the physical (or mathematical) system be described by probability 
density functions (pdf's). For now, we will assume that the behavior of a system can be 
described by pdf's. Once the pdf's are known, the Monte Carlo simulation can proceed 
by random sampling from the pdf's. Many simulations are then performed (multiple 
``trials'' or ``histories'') and the desired result is taken as an average over the number of 
observations (which may be a single observation or perhaps millions of observations). 
In many practical applications, one can predict the statistical error (the ``variance'') in 
this average result, and hence an estimate of the number of Monte Carlo trials that are 
needed to achieve a given error.  

Assuming that the evolution of the physical system can be described by probability 
density functions (pdf's), then the Monte Carlo simulation can proceed by sampling 
from these pdf's, which necessitates a fast and effective way to generate random 
numbers uniformly distributed on the interval [0,1]. The outcomes of these random 
samplings, or trials, must be accumulated or tallied in an appropriate manner to 
produce the desired result, but the essential characteristic of Monte Carlo is the use of 
random sampling techniques (and perhaps other algebra to manipulate the outcomes) 
to arrive at a solution of the physical problem. In contrast, a conventional numerical 
solution approach would start with the mathematical model of the physical system, 
discretizing the differential equations and then solving a set of algebraic equations for 
the unknown state of the system.  

It should be kept in mind though that this general description of Monte Carlo methods 
may not directly apply to some applications. It is natural to think that Monte Carlo 
methods are used to simulate random, or stochastic processes, since these can be 
described by pdf's. However, this coupling is actually too restrictive because many 
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Monte Carlo applications have no apparent stochastic content, such as the evaluation 
of a definite integral or the inversion of a system of linear equations. However, in these 
cases and others, one can present the desired solution in terms of pdf's, and while this 
transformation may seem artificial, this step allows the system to be treated as a 
stochastic process for the purpose of simulation and hence Monte Carlo methods can 
be applied to simulate the system. Therefore, we take a broad view of the definition of 
Monte Carlo methods and include in the Monte Carlo rubric all methods that involve 
statistical simulation of some underlying system, whether or not the system represents 
a real physical process.  

Major Components of a Monte Carlo Algorithm 

The primary components of a Monte Carlo simulation method include the following:  

• Probability distribution functions (pdf's) - the physical (or mathematical) 
system must be described by a set of pdf's.  

• Random number generator - a source of random numbers uniformly distributed 
on the unit interval must be available.  

• Sampling rule - a prescription for sampling from the specified pdf's, assuming 
the availability of random numbers on the unit interval, must be given.  

• Scoring (or tallying) - the outcomes must be accumulated into overall tallies or 
scores for the quantities of interest.  

• Error estimation - an estimate of the statistical error (variance) as a function of 
the number of trials and other quantities must be determined.  

• Variance reduction techniques - methods for reducing the variance in the 
estimated solution to reduce the computational time for Monte Carlo simulation  

• Parallelization and vectorization - algorithms to allow Monte Carlo methods to 
be implemented efficiently on advanced computer architectures.  

The Monte Carlo method is just one of many methods for analyzing uncertainty 
propagation, where the goal is to determine how different factors affect the sensitivity, 
performance, or reliability of the system that is being modeled. Monte Carlo 
simulation is categorized as a sampling method because the inputs are randomly 
generated from probability distributions to simulate the process of sampling from an 
actual population. So, we try to choose a distribution for the inputs that most closely 
matches data we already have, or best represents our current state of knowledge. The 
data generated from the simulation can be represented as probability distributions (or 
histograms) or converted to error bars, reliability predictions, tolerance zones, and 
confidence intervals. 
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The steps in Monte Carlo simulation corresponding to the uncertainty propagation are 
fairly simple, and can be easily implemented in Excel for simple models. All we need 
to do is follow the chart below: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Steps in Monte Carlo methods 

Create a Parametric 
Model 

y = f(x1, x2, ..., xq).

Generate a Set of 
Random Inputs 
xi1, xi2, ..., xiq 

Evaluate the model 
and store the results 

as yi

Repeat steps 2 and 3 
for i = 1 to n. 

Analyze the 
results 
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MONTE CARLO MODEL SIMULATION   METHOD OF TYPICAL 
RESERVOIR 
 
In achieving the Monte Carlo simulation, an actual reservoir database containing 
information about various oil wells in an oil field was obtained and processed. A 
sample of the database was extracted for comparison with the Monte Carlo simulation 
as shown. 
 
Table 1.0 Representative reservoir data employed for Monte Carlo simulations 

  REPRESENTATIVE RESERVOIR DATA EMPLOYED FOR   

   MONTE CARLO SIMULATIONS    

                  

SN FIELD NAME GRAVITY VISCOUSITY TEMPERATURE POROSITY PERMEABILITY NET PAY ANN. PROD. 

    API cp T % md Ft bbl 

1 Careyville Landing 19 29  135  27  333  7 8,315  

2 Lewisville, West 19 40  125  20  650  14 1,671  

3 Mayton 16 43  139  26  540  12 7,838  

4 Midway, East 18 79  113  25  940  6 6,417  

5 Pigeon Hill 15 36  151  23  330  13 3,249  

6 Winchester 20 65  121  28  709  10 3,393  

7 Edison, Main Area 18 97  109  26  675  25 2,333  

8 Sansinena, New England Area 18 28  142  33  200  150 429  

9 Tejon, Western Area 19 28  135  28  510  60 2,706  

10 Bayou Middle Fork 16 23  163  15  250  4 4,549  

11 Avera 20 7  198  20  560  16 8,217  

12 Cedro Hill 19 30  101  31  700  12 7,215  

13 Chapel Hill, East 16 14  182  23  280  13 4,864  

14 Forest Hill 16 23  162  24  200  8 2,015  

15 Manziel 18 21  153  24  200  13 4,340  

16 McCrary, West 17 22  157  24  200  7 6,779  

17 Nolan Edward 20 12  165  24  250  26 2,126  

18 Norman Paul 18 15  174  25  500  22 4,645  

19 Nova 20 12  165  24  200  15 3,417  

20 Nova, South 19 14  164  24  113  10 1,644  

21 Quitman, South 16 28  154  24  200  7 4,961  

22 Raccoon Bend 19 39  126  25  500  15 6,554  

23 Sugar Hill 18 16  166  22  375  11 3,804  

24 Tully 17 21  159  24  300  15 2,132  
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For the purpose of this simulation a model equation is required for the application of 
the Monte Carlo method. The equation employed is the Darcy equation for the 
prediction of flow rate in a porous medium using the medium’s permeability, viscosity, 
area, length of section and the pressure drop as the required input. The equation is 
shown below. 
 Darcy equation is given as:  
 
                           1 
 
q = Production Rate  
k = Permeability  
A = Cross section area   
µ = Fluid viscosity  

L
PΔ =

  
 Pressure gradient (Pressure change per unit length).  

       

The simulation was carried out using Microsoft office excel version 2003. This is a 
spread sheet application used for mathematical and statistical analysis. Its ability to 
calculate a large range of data and its relevant in-built functions was employed. The 
equation was then rearranged to calculate the Change in pressure using the MS Excel 
cell reference formula as shown in table below. 
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Table 2.0 Calculation of pressure change using Darcy law 
   CALCULATION OF PRESSURE CHANGE USING DARCY LAW   

SN FIELD NAME GRAVITY VISCOUSITY TEMPERATURE POROSITY PERMEABILITY NET PAY ANN. PROD. PRESSURE CHANGE 

    API Cp T % md ft Bbl psi 

1 Careyville Landing 19 29  135  27  333  7 8,315  5069 
2 Lewisville, West 19 40  125  20  650  14 1,671  1440 
3 Mayton 16 43  139  26  540  12 7,838  7490 
4 Midway, East 18 79  113  25  940  6 6,417  3236 
5 Pigeon Hill 15 36  151  23  330  13 3,249  4608 
6 Winchester 20 65  121  28  709  10 3,393  3111 
7 Edison, Main Area 18 97  109  26  675  25 2,333  8382 
8 Sansinena, New England Area 18 28  142  33  200  150 429  9009 
9 Tejon, Western Area 19 28  135  28  510  60 2,706  8914 
10 Bayou Middle Fork 16 23  163  15  250  4 4,549  1674 
11 Avera 20 7  198  20  560  16 8,217  1643 
12 Cedro Hill 19 30  101  31  700  12 7,215  3711 
13 Chapel Hill, East 16 14  182  23  280  13 4,864  3162 
14 Forest Hill 16 23  162  24  200  8 2,015  1854 
15 Manziel 18 21  153  24  200  13 4,340  5924 
16 McCrary, West 17 22  157  24  200  7 6,779  5220 
17 Nolan Edward 20 12  165  24  250  26 2,126  2653 
18 Norman Paul 18 15  174  25  500  22 4,645  3066 
19 Nova 20 12  165  24  200  15 3,417  3075 
20 Nova, South 19 14  164  24  113  10 1,644  2037 
21 Quitman, South 16 28  154  24  200  7 4,961  4862 
22 Raccoon Bend 19 39  126  25  500  15 6,554  7668 
23 Sugar Hill 18 16  166  22  375  11 3,804  1785 
24 Tully 17 21  159  24  300  15 2,132  2239 

The pressure changes were then normalized i.e. represented with a normal distribution 
and the corresponding probability was calculated. This calculation also achieved with 
MS Excel functions required the calculation of the mean and standard deviation of the 
set of pressure changes for the different reservoirs. 
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Table 3.0 Presentation of pressure change as a probability density function 

         

 PRESENTATION OF PRESSURE CHANGE AS A 
  

MEAN [ P]: 4242.88   

 PROBABILITY DENSITY FUNCTION 
  

STANDARD DEVIATION [ P]: 2465.29   

         

          Q P NORMAL   

SN FIELD NAME VISCOUSITY PERMEABILITY NET PAY ANNUAL. PROD. PRES. CHANGE DISTRIBUTION PROBABILITY 

    cp md ft bbl psi z of P   

1 Careyville Landing 29  333  7 8,315  5069 0.3351 0.6312 

2 Lewisville, West 40  650  14 1,671  1440 -1.1371 0.1278 

3 Mayton 43  540  12 7,838  7490 1.3170 0.9061 

4 Midway, East 79  940  6 6,417  3236 -0.4085 0.3415 

5 Pigeon Hill 36  330  13 3,249  4608 0.1480 0.5588 

6 Winchester 65  709  10 3,393  3111 -0.4593 0.3230 

7 Edison, Main Area 97  675  25 2,333  8382 1.6788 0.9534 

8 Sansinena, New England Area 28  200  150 429  9009 1.9333 0.9734 

9 Tejon, Western Area 28  510  60 2,706  8914 1.8947 0.9709 

10 Bayou Middle Fork 23  250  4 4,549  1674 -1.0420 0.1487 

11 Avera 7  560  16 8,217  1643 -1.0544 0.1458 

12 Cedro Hill 30  700  12 7,215  3711 -0.2159 0.4145 

13 Chapel Hill, East 14  280  13 4,864  3162 -0.4386 0.3305 

14 Forest Hill 23  200  8 2,015  1854 -0.9691 0.1663 

15 Manziel 21  200  13 4,340  5924 0.6820 0.7524 

16 McCrary, West 22  200  7 6,779  5220 0.3963 0.6541 

17 Nolan Edward 12  250  26 2,126  2653 -0.6448 0.2595 

18 Norman Paul 15  500  22 4,645  3066 -0.4775 0.3165 

19 Nova 12  200  15 3,417  3075 -0.4736 0.3179 

20 Nova, South 14  113  10 1,644  2037 -0.8948 0.1854 

21 Quitman, South 28  200  7 4,961  4862 0.2510 0.5991 

22 Raccoon Bend 39  500  15 6,554  7668 1.3894 0.9176 

23 Sugar Hill 16  375  11 3,804  1785 -0.9969 0.1594 

24 Tully 21  300  15 2,132  2239 -0.8130 0.2081 
 

In representing the above data using simulation, random numbers were generated to 
replicate the probability calculated for each of the above pressure change. Since the 
probabilities being for a normal distribution are between 0 and 1, random numbers 
were generated to lie between 0 and 1 also. MS Excel functions were then written to 
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achieve an inversion of the simulated probability values to pressure changes. To ensure 
that the simulated values keep dimensions with the actual reservoir data, the mean and 
standard deviation calculated for the actual data were employed for the inversion. 
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Table 4   Simulation of probability distribution of pressure changes i.e. Monte 
Carlo Simulations using mean and standard deviation of actual 
reservoir data 

 SIMULATION OF PROBABILITY DISTRIBUTION OF PRESSURE CHANGES i.e. MONTE CARLO SIMULATIONS 

 USING MEAN AND STANDARD DEVIATION OF SAMPLE RESERVOIR DATA  

   MEAN [ P]: 4242.88    

 
  

STANDARD DEVIATION [ P]: 2465.29    

   SIMULATED SIMULATED SIMULATED SIMULATED 

SN ANNUAL PROD. Q PRES. CHANGE P PROBABILITY NORMAL DIST. PRES. CHANGE [ P] ANNUAL PROD. Q 

  bbl Psi   z of sP psi bbl 

1 8,315  5069 0.6687 0.4362 5318.23 8723.99 

2 1,671  1440 0.2741 -0.6006 2762.28 3206.22 

3 7,838  7490 0.0056 -2.5333 -2002.57 -2095.71 

4 6,417  3236 0.8560 1.0624 6861.99 13608.16 

5 3,249  4608 0.2947 -0.5398 2912.22 2053.49 

6 3,393  3111 0.9244 1.4353 7781.41 8487.72 

7 2,333  8382 0.6607 0.4143 5264.13 1465.27 

8 429  9009 0.4698 -0.0757 4056.15 193.15 

9 2,706  8914 0.6686 0.4362 5318.13 1614.43 

10 4,549  1674 0.2936 -0.5429 2904.46 7892.55 

11 8,217  1643 0.5796 0.2009 4738.13 23690.66 

12 7,215  3711 0.8913 1.2336 7283.99 14163.31 

13 4,864  3162 0.0309 -1.8681 -362.52 -557.72 

14 2,015  1854 0.8004 0.8431 6321.34 6871.02 

15 4,340  5924 0.3393 -0.4142 3221.65 2360.18 

16 6,779  5220 0.2909 -0.5508 2884.87 3746.59 

17 2,126  2653 0.1423 -1.0702 1604.58 1285.72 

18 4,645  3066 0.3568 -0.3670 3338.21 5057.89 

19 3,417  3075 0.9973 2.7780 11091.39 12323.77 

20 1,644  2037 0.7030 0.5332 5557.31 4485.54 

21 4,961  4862 0.1203 -1.1733 1350.37 1377.93 

22 6,554  7668 0.1139 -1.2060 1269.66 1085.18 

23 3,804  1785 0.2184 -0.7777 2325.58 4955.06 

24 2,132  2239 0.2730 -0.6038 2754.42 2623.26 
 

From table above, the calculated change was then employed in the Darcy equation to 
find the simulated production rate as shown in same table. Table 5 below shows a 
comparison of the reservoir data and its derivation to the simulated values and the 
calculations made with these values. 
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Table 5 Comparison of actual and simulated values of production rate and 
pressure change 

       

 COMPARISON OF ACTUAL AND SIMULATED VALUES OF PRODUCTION RATE AND  

   PRESSURE CHANGE   
       

     SIMULATED SIMULATED    

 ANNUAL PROD. Q PRES. CHANGE P ANNUAL PROD. Q PRES. CHANGE P]   

 bbl Psi Bbl psi   
 8,315  5069 8498.70 13941.21   
 1,671  1440 3516.81 4082.02   
 7,838  7490 3878.28 4058.66   
 6,417  3236 7037.80 13956.83   
 3,249  4608 2960.34 2087.42   
 3,393  3111 4489.42 4896.92   
 2,333  8382 4453.27 1239.57   
 429  9009 6926.12 329.82   
 2,706  8914 6363.72 1931.84   
 4,549  1674 6832.24 18565.86   
 8,217  1643 8613.96 43069.79   
 7,215  3711 4501.12 8752.17   
 4,864  3162 4084.04 6283.13   
 2,015  1854 4748.70 5161.63   
 4,340  5924 2968.70 2174.87   
 6,779  5220 5730.38 7442.05   
 2,126  2653 4970.26 3982.58   
 4,645  3066 6157.29 9329.22   
 3,417  3075 4438.73 4931.92   
 1,644  2037 3193.34 2577.48   
 4,961  4862 2058.07 2100.07   
 6,554  7668 1049.52 897.03   
 3,804  1785 1721.26 3667.46   
 2,132  2239 1548.43 1474.69   
       

The similarities between the two values are clearly observed despite the slight 
variation. It should be noted that series of runs of the MS Excel calculations result in 
successive evaluation of the formula using the random numbers generated. This can be 
better observed when the program is run on MS Excel (with continuous hitting of F9 
key), the values is seen to change as the whole worksheet is recalculated with new 
random numbers each time. The plot of the two quantities produced and pressure 
change values are shown below. The graph when run on the MS Excel worksheet is 
also recalculated each time. 
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Figure 3 Comparison of actual reservoir data with simulated values for 
production rate 

The shortcomings of the simulation are obvious from the negative production rate 
displayed by the simulated values for each reservoir. This can be explained as the 
outcome of very low pressure changes in the well. Since this is the result from a 
simulated case as we can observe that data for the actual reservoir are above the 
negative lines (the thick continuous lines), though often, the simulated result results in 
all positive production (achieved by hitting the F9 key). In actual reservoirs, low 
pressures results in no production. This is the main thrust of the secondary and tertiary 
recovery techniques. This can therefore be used to compare reality and simulation. 

A further graph is also plotted to show pressure variation between the reservoir data 
and the simulation. The pattern is seen to also represent an average of the actual 
reservoir data as shown in Figure 4 
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COMPARISON OF PRESSURE CHANGE FOR ACTUAL 
AND SIMULATED DATA
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Figure 4 Comparison of actual reservoir data with simulated values for pressure 
change 

The following graphs show the statistics of the number of reservoir with particular 
classes of production and pressure for a single run. It is obvious that majority of the 
reservoirs have production rate production rate above average for most of the time as 
seen from the frequency. The graph of pressure is also similar. 
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Figure 5 Distribution of production rate 
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Figure 6 Distributions of pressure changes. 
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Monte Carlo Stochastic Simulation: Results and Discussions 

The main ingredient of a stochastic simulation using Monte Carlo is the analysis of a 
particular problem using randomly generated data. When a model created with a 
spreadsheet like MS Excel, we have a certain number of input parameters and a few 
equations that use those inputs to give a set of outputs (or response variables). This 
type of model is usually deterministic, meaning that we get the same results no matter 
how many times you re-calculate as shown below. 

Monte Carlo simulation is a method for iteratively evaluating a deterministic model 
using sets of random numbers as inputs. This method is often used when the model is 
complex, nonlinear, or involves more than just a couple uncertain parameters. A 
simulation can typically involve over 10,000 evaluations of the model, the higher the 
number of evaluation, the more accurate the results. This work analyzed 5000 runs 
using random inputs. By using random inputs, we are essentially turning the 
deterministic model into a stochastic model which is then solved iteratively over the 
chosen number of runs.  

The deterministic model used is the Darcy equation and it was evaluated using a single 
well data from the sample shown earlier. 
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Table 6 Input data for the model 

Using the Darcy equation, the pressure change was evaluated. A single run stochastic 
evaluation was also done using generated data so as to check the correlation. 

SN FIELD NAME GRAVITY VISCOUSITY TEMPERATURE POROSITY PERMEABILITY NET PAY ANN. PROD. 

    API Cp T % md ft bbl 

16 McCrary, West 17 22  157  24  200  7 6,779  
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Table 7 result of model evaluation; deterministic and single run stochastic 

Input Values (input)           
                
    Reservoir   Min Max   Stochastic 
                

Annual Prod. (Q) 6,779    4067.4 8134.8   5484.97 
Viscosity (u) 22.00   17.6 28.6   22.69 

Net Pay (l) 7.00   5.6 9.8   6.21 
Permeability (k) 200.00   180 220   216.63 
Unity Area (A) 1.00           

     
  
 

          

Results (calculations)           
                
    Deterministic         Stochastic 
                
  Pressure Change: 5,219.83         3,565.34 
                
                

 

 

 

Second Run-Press F9-Close to Determined Values 

Reservoir Performance Prediction Model       
Darcy's Law             
        
Input Values (input)           
                
    Reservoir   Min Max   Stochastic 
                

Annual Prod. (Q) 6,779    4067.4 8134.8   5174.09 
Viscosity (u) 22.00   17.6 28.6   24.24 

Net Pay (l) 7.00   5.6 9.8   8.10 
Permeability (k) 200.00   180 220   194.03 

Unity Area (A) 1.00           
               

Press F9 to Re-
Calculate single 
run stochastic  

Actual reservoir 
result 

deterministic 

Press F9 to Re-
Calculate single 
run stochastic  

Actual reservoir 
result  
deterministic  
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Results (calculations)           
                
    Deterministic         Stochastic 
                
  Pressure Change: 5,219.83         5,234.07 
                
                

The stochastic column was designed to pick random values between the minimum and 
maximum of each of the parameter. It is recalculated when the program is run on MS 
Excel. 

The actual Monte Carlo simulation was then run for n = 5000, and the model evaluated 
for each run. A mean of the 5000 pressure changes was evaluated and compared to the 
result from the deterministic evaluation and the single run stochastic method as shown 
below. 
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Monte Carlo Simulation (Summary Report) 
      

See Monte
Workshee

Summary Statistics    Probability of Pressure greater or Less Than  

    
 
  
 

       Actual Reservoir 
Pressure: 5,219.83  

  Sample Size (n): 10000        Simulated Mean: 5423.92 
                 

  MEAN: 5,423.92  Pr( x <    5219.83 )    = 49.09% 

  STDEV: 1,602.44  Pr( x >    5219.83 )    = 50.91% 

  Mean Standard Error: 22.66            
                 

 

Histogram of Monte Carlo Simulation Results
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Press F9 to Re-
Calculate Monte 
Carlo simulation 
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Table 7 Monte Carlo simulation 

  RAND RAND RAND RAND CONSTANT   RESULT 

SN ANN. PROD. VISCOUSITY NET PAY PERMEABILITY AREA   PRES. CHANGE 

1 5919.82 18.9019 7.5285 211.787 1.0000  3977.63 
2 4288.08 24.1184 5.9664 199.609 1.0000  3091.32 

3 8114.23 23.1584 5.6013 201.906 1.0000  5213.11 
4 5699.41 21.9730 9.5099 188.168 1.0000  6329.22 
5 7645.83 22.5242 8.2960 204.178 1.0000  6997.32 
6 7818.79 19.9602 7.2921 200.208 1.0000  5684.28 
7 6006.17 21.7557 6.7421 212.968 1.0000  4136.67 

8 4180.42 24.5965 7.0963 208.429 1.0000  3500.77 
9 4706.93 22.4741 7.9709 211.560 1.0000  3985.61 

10 6649.93 21.3102 6.6919 186.110 1.0000  5095.45 
11 6358.01 26.0448 6.2409 188.093 1.0000  5494.35 
12 5875.52 28.0539 7.8074 215.126 1.0000  5982.06 
13 5815.93 18.1239 7.9285 203.376 1.0000  4109.22 
14 5663.84 25.2883 9.4355 183.497 1.0000  7364.91 

15 5063.47 22.6199 7.0193 204.029 1.0000  3940.43 
16 7441.89 25.9181 9.5390 219.894 1.0000  8367.14 
17 7694.57 24.4137 6.0668 207.418 1.0000  5494.59 
18 4370.74 20.2703 9.7044 197.716 1.0000  4348.52 
19 5115.90 20.0580 7.4200 183.149 1.0000  4157.29 
20 8050.68 26.0901 6.2585 200.873 1.0000  6544.21 
21 7528.64 19.4813 9.2545 204.023 1.0000  6652.83 
22 6814.84 22.8230 5.7473 191.948 1.0000  4656.99 
23 4226.86 21.8885 7.2867 184.894 1.0000  3646.22 

- - - - - -  - 
- - - - - -  - 
- - - - - -  - 
- - - - - -  - 

4994 7648.14 22.9760 9.4753 202.159 1.0000  8236.26 
4995 5022.32 19.0569 9.2475 195.180 1.0000  4534.65 
4996 4624.11 18.4947 5.6660 216.567 1.0000  2237.50 
4997 7945.35 28.2878 5.6082 215.965 1.0000  5836.52 
4998 7806.47 28.1398 8.8307 215.027 1.0000  9021.53 
4999 7816.65 25.0269 6.3036 195.787 1.0000  6298.37 
5000 5607.49 19.6907 6.6374 201.791 1.0000  3631.83 

Table 8 calculated mean of the Monte Carlo simulation 

Summary Statistics     
          
  Sample Size (N): 5000     
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Central Tendency (Location)   

          
Mean: 5430.49 Median: 5249.74   
StErr: 22.41       

Refer to appendix F for formula used 

Although we still need to analyze the data, we have essentially completed a Monte 
Carlo simulation. Because we have used the volatile RAND () formula, to re-run the 
simulation all we have to do is recalculate the worksheet each time (F9 is the shortcut). 

This may seem like a strange way to implement Monte Carlo simulation, but what is 
going on behind the scenes is that every time the Worksheet recalculates:  

(1) 5000 sets of random inputs are generated  

(2) The model is evaluated for all 5000 sets.  

(3) The mean of the evaluation is calculated 

MS Excel is handling all of the iteration. 

A comparison of the deterministic result [5,219.83], the single run stochastic method 
[3,565.34] and the Monte Carlo simulation [5430.49] shows the advantage of the 
multiple run achieved through the Monte Carlo method. 

Some statistical tools were employed to analyze the result as explained below. 
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Sample Size (n) 

The sample size, n, is the number of observations or data points from a single MC 
simulation. For this example, we obtained n = 5000 simulated observations. Because 
the Monte Carlo method is stochastic, if we repeat the simulation, we will end up 
calculating a different set of summary statistics. The larger the sample size, the smaller 
the difference will be between the repeated simulations.  

Central Tendency: Mean and Median 

The sample mean and median statistics describe the central tendency or "location" of 
the distribution. The arithmetic mean is simply the average value of the observations. 

If you sort the results from lowest to highest, the median is the "middle" value or the 
50th Percentile, meaning that 50% of the results from the simulation are less than the 
median. If there is an even number of data points, then the median is the average of the 
middle two points. 

Spread: Standard Deviation, Range, Quartiles 

The standard deviation and range describe the spread of the data or observations. The 
standard deviation is calculated using the STDEV function in MS Excel. 

The sample mean is just an estimate of the true population mean. It is obvious that by 
repeating the simulation (using F9) that the mean is not the same for each simulation. 

Standard Error 

When the Monte Carlo simulation repeated and the sample means each time recorded, 
the standard error is a good estimate of the standard deviation of this distribution, 
assuming that the sample is sufficiently large. 

The standard error is calculated using the following formula: 

 
Range 

The range is also a helpful statistic, and it is simply the maximum value minus the 
minimum value. Extreme values have a large effect on the range, so a better measure 
of spread is a measure called the Interquartile Range. 
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The Interquartile Range represents the central 50% of the data. If you sorted the data 
from lowest to highest, and divided the data points into 4 sets, you would have 4 
Quartiles. 
The above enumerated tools were then used to analyze the data and comparison was 
made with the other models i.e. the deterministic model and the single run stochastic 
model. The summary of the result are shown below. 
Table 9 Summary statistics for Monte Carlo simulation 
Summary Statistics     

          
  Sample Size (N): 5000     
          

Central Tendency (Location)   
          

Mean: 5452.18 Median: 5263.81   
StErr: 22.70       
          
Spread       

          
StDev: 1605.39       

Max: 11429.06 Q(.75): 6452.98   
Min: 2088.49 Q(.25): 4246.42   

Range: 9340.57 IQ Range: 2206.55   
          

Refer to appendix G for formula used 

As a way of predicting the probability of a particular range of pressure change, the 
following was calculated.  

Table 10 Calculating probabilities using the Excel percent rank function. 

Probability of Pressure greater or Less Than   
   Actual Reservoir Pressure: 5,219.83   
    Simulated Mean: 5452.18   
          

Pr( x <  5219.83 )    = 48.75%   
Pr( x >  5219.83 )    = 51.25%   

          
 
Refer to appendix H for formula used 

The accuracy of the result will depend upon the number of data points and how far out 
on the tails of the distribution is (also on how realistic the model is, how well the input 
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distributions represent the true uncertainty or variation, and how good the random 
number generator is). Recalculating the spreadsheet a few times by pressing F9 will 
give an idea of how much the result may vary between each simulation. 

A graph is shown below to give a visual representation of how the data varies and the 
probability of each group is displayed on the graph for each group. 

Histogram of Monte Carlo Simulation Results
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Figure 7 Histogram and probability distribution of the Monte Carlo simulation. 
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A sample screen of the MS Excel calculations with the histogram is shown below. 

 

 

 

 

 

 

 

 

Figure 8 actual Monte Carlo simulations 
 
 
 
 
 
 
 



* Corresponding author, key words, reservoir performance, stochastic, Monte 
Carlo, simulations 

33

CONCLUSIONS  
 
Computer Simulation has to do with using computer models to imitate real life or 
make predictions. The main ingredient of a stochastic simulation using Monte Carlo is 
the analysis of a particular problem using random genrated data. When a model created 
with a spread sheet like MS Excel, we have a certain  number of imput parameters and 
a few equations that use those inputs to give a set of outputs ( or rrespnse variables). 
This type of model is usually deterministic meaning we get the same results no matter 
how many times you recalculate as shown below. 
 
Monte Carlo Simulation is a method for iteratively evaluating a deterministic model 
using sets of random numbers as inputs. This method is often used when the model is 
complex, non linear, or involves more than just a couple uncertain parameters. A 
simulation can typically involved over 10,000 evaluations of the model, the higher the 
number of evaluation, the more accurate the results. 
 
Our work analysed 5000 runs using random inputs. By using random inputs, we are 
essentially turning the deterministic model into a stochastic  model which is then 
solved iteratively over the chosen number of runs. 
 
The deterministic model used in darcy equation and it was evaluated using a single 
well data from the sample shown earlier. A comparison of the deterministic result 
[5,219.83], the single run stochastic method [3,565.34] and the Monte Carlo 
Simulation [5430.49] shows the advantage of the multiple run achieved through the 
Monte Carlo Method. 
 
The result being quite close to the eterministic value thus demonstrated that the Monte 
Carlo iteration can achive a high enough accuracy to be reliable in evaluating any 
suituation. Various statistical tools were also employed to display the standard 
deviation of the range of generated data from the mean and the standard error was also 
calculated. They are all points to the reliability of the approach. 
 
 
List of Symbols 
q = Production Rate        bbls/day 
k = Permeability        Darcy  
A = Cross section area        m2 
µ = Fluid viscosity        Kg/m.s 

L
PΔ =

  
 Pressure gradient (Pressure change per unit length).   Pascal/m 
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