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Abstract  
The deconvolution method has received much attention recently, and is becoming one 
of the major tools for well test and production data analysis. Here, we present several 
new deconvolution algorithms, which we believe that are relevant and can be an 
important addition to the existing efforts made in this field. We show that the solution 
of the deconvolution problem can be successfully represented as a linear combination 
of exponential basis functions. We present three deconvolution algorithms. The first 
two algorithms are based on regularization concepts borrowed from the well-known 
Tikhonov and Krylov methods, while the third algorithm is based on the stochastic 
Monte Carlo method. 

Introduction  
Deconvolution is a mathematical method that can be used to convert the pressure data 
response from a variable-rate test, or production sequence, into a constant-rate 
equivalent pressure profile for the entire duration of the test or production history, 
thus making the data more useful for interpretation [1-9]. The deconvolution method 
allows one to extract more information from well test and production data than is 
possible by using conventional analysis methods [10]. For example, the Bourdet 
derivative plot [11], displays the pressure behavior only for a specific flow period of a 
test, while the result of deconvolution can give the transient pressure behavior for a 
group of flow periods. Therefore, the deconvolved system response is defined on a 
longer time interval, and reveals characteristics of the transient behavior that 
otherwise would not be observed using the conventional methods. Due to these 
reasons, the pressure-rate deconvolution problem has received considerable interest 
over the past decades. Unfortunately, applying deconvolution to well test and 
production data analysis is a difficult challenge because it requires the solution of an 
ill-conditioned problem. This ill-conditioned problem, combined with the errors that 
are inherent in pressure and rate measurements, makes the development of robust 
(error-tolerant) deconvolution algorithms a real-challenge. During the past several 
decades, a large number of algorithms have been proposed [1-8]. However, only a 
few, recently developed algorithms [6-8], appear to be somewhat more robust [9]. 
The goal of this work is not to analyse the performance of the existing algorithms, but 
to identify and explore several new algorithms, which we believe that are relevant and 
can be important additions to the existing efforts made in this field. We are interested 
in simple and robust algorithms, which do not require too many parameters for tuning, 
and can be easily implemented in a software product.  
In this article we show that the solution of the deconvolution problem can be 
successfully represented as a linear combination of exponential basis functions. This 
approach is justified by the fact that in well-test and production data analysis we are 
interested in the transient response, which for a stable linear system is a linear 
combination of exponential functions.  
The first two algorithms are based on regularization concepts borrowed from the well-
known Tikhonov [12] and Krylov [13-14] methods, while the third one is a new 
stochastic Monte Carlo algorithm. 

Pressure-rate deconvolution model  
In the well test theory, the input signal is usually a step function in rate created by 
closing a flowing well or an injection well, by opening a well previously shut-in or by 
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injecting in a well previously closed. The corresponding output signal is the change in 
pressure created by the change in rate. Alternatively, the input signal could be the 
wellhead bottomhole pressure and the output signal would then be the change in the 
production rate. The way the input signal is created is not important as far as well test 
analysis is concerned. What is important is the quality of both measured input and 
output signals. In this section we give a short discussion of the pressure-rate 
deconvolution model in the framework of linear systems theory [15-16]. 
In general, a linear system is a functional transformation, L , which converts an input 
signal, )(tf  to an output signal, )(tg : 

)]([)( tfLtg =  
and which follows the principles of superposition 

)]([)]([)]()([ 2121 tfLtfLtftfL +=+  
and amplitude scaling 

)]([)]([ tfLtfL αα = , 
where α  is a scalar. The amplitude scaling also implies that the output of the system 
is zero when there is no input: 

0]0[ =L  
Here, we consider systems that are:  
- time-invariant, i.e., the functionality of L  is not time dependent.  
- causal, i.e., the output at time 0t  depends only on values of the input for 0tt ≤ .  
- stable, i.e., every non-infinite input produces a non-infinite output. 
These simple rules, defining the linear systems, provide far-ranging and very useful 
constraints on the mathematical characterization of the system.  
Several idealized input functions are of special importance in analyzing systems: the 
Dirac impulse function and the Heaviside unit step function. The Heaviside step 
function is defined as: 
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while the Dirac impulse function is its derivative: 

)()( t
dt
dt Θ=δ . 

The Dirac function has the following fundamental properties: 
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The impulse response of a system is the output produced by a Dirac impulse input 

)]([)( tLth δ=  
Similarly, we have the step response, or the response to the unit step function 

)]([)( tLtH Θ= . 
In general, we are interested in the response of a system not to these special functions, 
but to an arbitrary input. The trick is to approximate this arbitrary input as a sequence 
of step functions, and then to use the superposition principle to obtain the overall 
response. It is necessary to assume that the input function )(tf  is continuous, so that 
the approximation is meaningful. Suppose the input starts at 0=t , and time is 
discretized into bins Δ  units apart. The first step in the approximation has height 
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)0(f , a constant, and the additional step at Δ= kt  has height ))1(()( Δ−−Δ kfkf . 
The signal )(tf  can thus be approximated by: 

∑
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The approximate output is then given by 

∑

∑

∑

=

=

=

ΔΔ−
Δ

Δ−−Δ
+=

Δ−Δ−−Δ+=

Δ−ΘΔ−−Δ+Θ=

=

K

k

K

k

K

k

ktHkfkftHf

ktHkfkftHf

ktLkfkftLf

tfLtg

1

1

1

)())1(()()()0(

)()])1(()([)()0(

)]([)])1(()([)]([)0(

)]([)(

 

Now, we introduce a limiting process in which the time steps become vanishingly 
close, so that τd→Δ , τ→Δk  and tK →Δ . Thus, the sum becomes an integral and 
we have: 
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because 0)0( =H . 
Now, let us assume that the input signal )(tf  corresponds to the flow rate )(tq  and 
the output signal is the difference between the initial pressure ip  and the pressure 

)(tp  at an elapsed time t . Therefore, the impulse response )(th  corresponds to the 
time derivative of the unit (constant) rate pressure )()( tptH u= : 

dt
dp

th u=)( . 

With these assumptions we obtain the following convolution integral: 

∫ −−=
t

i dhtqptp
0

)()()( τττ . 
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The above integral equation is known as Duhamel’s principle and it represents the 
foundation of well test analysis [1-11]. This is also equivalent to a Volterra integral 
equation of the first kind [17]. 
The crucial step in well test analysis is to calculate the logarithmic derivative of the 
unit step response [1-11]: 

)()]([)]([)]([)(
ln

)()( tthttLt
dt
dtLtL

dt
dt

dt
tdHt

td
tdHtG ==Θ=Θ=== δ , 

from measurements of rate and pressure drop. Up to multiplication with time, the task 
is to estimate the impulse response )(th  from the convolution integral. Therefore, the 
objective of the deconvolution process is to recover the impulse response )(th , given 
the observed measurements of pressure and flow rate. This leads to the inverse 
problem in which the time dependent signal )(th  must be extracted from the output 
signal )(tp  given the flow rate )(tq .  
Inverse problems are a notorious source of ill-posed problems [18-19]. The numerical 
solution of these problems involves some kind of discretization, which in turn 
originates a class of problems known as discrete ill-posed problems, which are very 
ill-conditioned. The fact that ill conditioning is an intrinsic feature of these problems 
makes it necessary to develop special numerical methods to treat them. Also, there are 
a number of issues that have to be considered before proceeding with the 
deconvolution of well-test data: (i) the deconvolution will produce a meaningful 
system response function only if the test pressure and rate data are consistent with the 
superposition model (ii) the superposition principle is valid only for linear systems, 
governed by linear equations (iii) the linearity implies single-phase flow in the 
reservoir (in the case of gas reservoir one has to use pseudo-pressure transform to 
linearize the fluid flow problem). Therefore, it is important to use only the portions of 
pressure data that are of good quality and are consistent with the superposition 
principle. It is important to note that a good deconvolution method must be able to 
point out the inconsistencies in the data. Therefore, the deconvolution can be also 
used for detecting inconsistencies between rate and pressure data.  
Another important aspect deals with the solution itself. It is well known that in 
general the response )(ty  of a stable linear system to a general input )(tf  is the sum 
of a homogenous component and a particular solution )(ty p  [15-16]: 

)()exp()(
1

tytxty p

J

j
jj += ∑

=

λ , 

where J  is the system order, jλ  are the roots of the distinct characteristic equation 
(the system’s eigenvalues) and jx  are the constants depending on the initial 
condition. For a stable system all the terms )exp( tjλ  must decay to zero, this means 
that all the eigenvalues must be negative 0<jλ . Also, it is convenient to consider the 
total response )(ty  in two regions, an initial transient region in which the exponential 
homogeneous components )exp( tjλ  must be considered, followed by the steady-state 
region when the homogeneous solution components have all decayed to the point of 
becoming insignificant. In the steady-state region, only the particular response 
component )(ty p  of the response is considered.  
In well test and production data analysis, we are interested only in the transient 
response, and therefore we should be able to represent the solution as a sum of 
exponential basis functions: 
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Unfortunately, we do not know anything about the system itself. We do not know the 
dimensionality J  and we do not know the eigenvalues jλ . Also, there is no method 
to find these quantities from the rate and pressure measurements. However, this may 
not be so important because the solution of the inverse problem is non-unique: several 
different systems may exist which, for identical input signals, provide identical output 
signals [18]. This non-uniqueness is a property of the inverse problem that cannot be 
avoided, and it has significant implications on the methodology for well test analysis. 
Apparently, it seems that this property is not desirable. However, our approach to the 
deconvolution problem exploits exactly this property. Instead of searching for a 
specific system, we design a general system capable to generate the type of responses 
we are looking for.  
We consider a system with a given dimensionality J  for which the eigenvalues jλ  
are distributed such that by adjusting the coefficients jx  one can generate the class of 
responses we are looking for. In the well-test and production data analysis, the 
logarithmic derivative )()( tthtG =  is represented on a log-log plot. Therefore, we 
seek a distribution of J  negative eigenvalues 0<jλ  such that the functions: 

Jjttt jj ,...,1),exp()( == λϕ  
give a good decomposition of the logarithmic derivative in the log-log space. Based 
on several numerical experiments we have concluded that the following set of 
eigenvalues: 

JjJjj ,...,1,)( =−= γαλ  
where α  is a time scaling constant, give a good decomposition. In Fig. 1 we give the 
graphical representation of the functions )(tjϕ , for 15=J , 3=γ  and 1=α . One can 
see that the whole time interval is almost uniformly covered by these functions. This 
means that we can write the solution of the deconvolution problem as a linear 
composition of exponential functions. Our numerical experiments have shown that for 
small dimensionality values, 10010 ÷≈J , the distribution parameter should be 3≈γ . 
This value decreases by increasing J . For, large 1000≈J  the parameter value 
should be 1=γ . Also, we have found that a small number of exponential basis 
functions, typically 20≈J  are enough to represent almost any type of well test 
responses. The constant α  is set to 110 −= Tγα , where T  is the time length of the 
test, in this case 310=T , 3=γ . 

Discrete ill-conditioned Volterra equation  
The numerical solution of the deconvolution problem requires the discretization of the 
continuous Volterra equation [17]. Here, we consider that the solution can be 
represented as a linear composition: 

∑
=

=
J

j
jj txth

1
)()( ψ , 

where  
JjtJjtj ,...,1],)(exp[)( =−= γαψ  

are the exponential basis functions, and  
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T
Jxxx ),...,( 1=  

is the unknown vector of coefficients (here, T  stands for the transposition of vectors 
and matrices). This form of the solution leads to the following equation: 

∑ ∫
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jji dtqxptp
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The evaluation of this equation at discrete moments of time: 
},...,1,0|{ Nntn =  

yields a system of equations which can be written as following: 

∑
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where  
nin ppp −=Δ  

and 

NnNjdtqa
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are the elements of the sensitivity matrix elements.  
Now let us consider the case where the initial pressure is not known, and is treated as 
a new unknown coefficient ipx ≡0 . This leads to the following system: 
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In a matrix form we have: 
ywx = , 

where  
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The integral in the sensitivity matrix elements can be approximated by the following 
simple rectangular rule: 
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The solution of the discrete Volterra equation is: 
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Also, the reconstructed pressure signal is: 

∑
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The discrete form of the logarithmic derivative must be calculated in the middle of the 
interval ],[ 1+nn tt : 

1,...,0,)(5.0 1 −=+= + NnhttG nnnn , 
because of the rectangular approximation of the integrals in the sensitivity matrix. 
The discrete ill-conditioned problem has the following non-desirable properties: 
- the linear system is usually over-determined NJ < ; 
- the system’s matrix w  has a large cluster of small singular values, which increases 
with the dimension problem; 
- standard inversion method fail to produce a meaningful solution. 

Least squares problem  
Instead of solving the ill-conditioned system ywx = , the least squares problem 
consists in solving the optimization problem [19-21]: 

2min ywx
x

− , 

which gives an approximate solution (here ⋅  is the Euclidean norm). The least 
squares problem has the advantage that the solution with the minimum norm is unique 
and satisfies the system of normal equations: 

ywwxw TT =  
An important tool for the analysis of the least squares problem is the Singular Value 
Decomposition (SVD) of the sensitivity matrix w : 

TVUw Γ= , 
where 

IUU T = , 
IVVVV TT == , 

)( idiag γ=Γ . 
Here, iγ  are the (non-zero) singular values (eigenvalues), the columns of U  are the 
left singular vectors and the columns of V  are the right singular vectors of w . Also, 
I  is the identity matrix. Replacing TVUw Γ=  in the system of equations yields the 
solution: 

∑=Γ= −
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The norm of the least squares solution is therefore given by 

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i
i

i

T
i v

yu
x

2

γ
. 

This norm will not be too large as long as 1<i
T
i yu γ . Also, in discrete ill-

conditioned problems the singular vectors have more sign changes in their 
components as the singular values decrease, i.e. the high frequency components 
corresponds to small singular values. Therefore, in order to have a solution, yuT

i  

must decay to zero faster than iγ  (Picard condition). 
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Now, let us assume that we are interested in recovering the solution x  from x , which 
is the solution of 

2min yxa
x

−  

where 
η+= yy  

with η  a random vector representing the noise. The solution x  is obviously given by: 

∑∑ +=
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Thus, x  consists of two terms: one is the actual solution x  of the unperturbed 
problem, and the other is the contribution from the noise. The difficulty of finding x  
comes from the noise contribution. Since it is not reasonable to expect that η  satisfies 
the Picard condition, it is possible that ηT

iu  increases or becomes constant, causing 

the ratio i
T
iu γη  to blow up, making impossible to recover the solution x . 

Tikhonov method 
Numerical regularization techniques seek to approximate the exact (unknown) 
solution of an ill-conditioned problem by the solution of a related well-known 
problem that includes meaningful information about the solution to the original 
problem. Here, we consider the well-known Tikhonov regularization method where 
the additional information is usually expressed as a constraint of the form [12]: 

εσ ≤x , 
where σ  is typically the identity operator I  or a discretized derivative operator, and 

0>ε  is a small positive quantity. This constraint is used to control the smoothness 
and the size of the approximate solution. To justify the use of this constraint, one must 
assume that the exact solution is smooth or that it has small norm. Regularization is 
also known as smoothing because it tries to damp non-smooth components in the 
approximate solution. When non-smooth components correspond to small singular 
values, those components are magnified by the noise. Regularization can also be 
regarded as a multi-objective optimization problem where one tries to balance the 
quality of the approximation and the effect of perturbations on the solution. 
Associated with any regularization method there is a parameter, namely the 
regularization parameter, which controls how much perturbation effect is allowed. 
Therefore the regularization of the ill-conditioned system ywx =  can be formulated 
as following: 

}{min 222 xywx
x

σμ+− , 

where 0>μ  is the regularization parameter. This is equivalent of solving 
simultaneously two systems of equations: 

ywwxw TT =  
with a weight 1, and 

εσ =x  
with a weight μ . Therefore we can write 

0)( =−+− εσμ xywwxw TT , 
or equivalently 

μεμσ +=+ ywxww TT )( . 
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One can neglect the residual 10 <<< με  (which is a small quantity) and thus the 
solution of the regularized problem is given by: 

ywwwx TT 1)( −+= μσ . 
Note that 

TT wwww 1

0
)(lim −

→

+ += μσ
μ

 

is the pseudo-inverse of w . Therefore for small values of μ  one can recover 
meaningful information on the solution of initial system, which is obviously given by: 

ywx += . 
The numerical implementation of the Tikhonov regularization method requires the 
calculation of the inverse matrix 1)( −+ μσwwT . In our implementation we have used 
the LU inversion method, which seems to work quite well in this case [22]. Also, we 
have implemented a simple pre-conditioning method by computing the solution as 
following [21]: 

ywArwwAx TT 111 )( −−− += μ , 
where 

)( wwdiagA T=  
is the pre-conditioning matrix. This procedure helps very much, if the matrix wwT  is 
very ill-conditioned, by making all the diagonal coefficients equal to one.  

Krylov method 
Another approach to regularization is given by the so-called Krylov subspace 
projection methods [13-14]. These are iterative methods, developed for symmetric 
and positive definite linear systems and therefore they can be applied to the normal 
equations. Krylov subspace projection methods are non-stationary, meaning that the 
relationship between iterations is not given by a fixed matrix. From this point of view, 
Krylov methods are a major innovation in numerical linear algebra. The basic 
methods of this type are the Lanczos method and the conjugate gradient method. 
These two methods are essentially the same method applied in different ways. The 
Lanczos method generates an approximate tridiagonalization of wwW T= , which 
then can be used to solve a tridiagonal system. The obtained solution is equivalent to 
the conjugate gradient solution. The conjugate gradient method has an advantage,  
because it needs less storage. Therefore, our choice is the conjugate gradient method, 
for which we give a short description of our implementation. 
We consider a linear system of the form: 

zWx = , 
where 

wwW T=  
is a symmetric positive definite matrix and 

ywz T=  
is a given vector.  
We say that two non-zero vectors u  and v  are conjugate with respect to W  if:  

0=WvuT . 
Since W  is symmetric and positive definite, the left-hand side defines an inner 
product: 

Wvuvu T
W =),( . 
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So, two vectors are conjugate if they are orthogonal with respect to this inner product. 
Suppose that { },...2,1|)( =kd k  is a sequence of mutually conjugate directions. Then 
{ })(kd  form a basis, so we can expand the solution of zWx =  in this basis: 

)()2(
2

)1(
1

)( ... k
k

k dddxx ααα +++=≈ . 
This gives the following method for solving the system zWx = . First we find a 
sequence of conjugate directions { })(kd  and then we compute the coefficients }{ kα . 
This is the essence of the conjugate gradient method. At the k  iteration step, the 
conjugate gradient method finds a vector in the Krylov subspace 

),,,(
},...,,{

}...,,{

)1(

)1(1)1()1(

)()2()1(

kdWK
dWWddspan

dddspan

k

k

k

≡

= −  

which minimizes the functional 

xzWxxxf TT −=
2
1)( . 

Obviously, we have: 

zWxxf
dx
d

−=)( . 

The above derivative vanishes if x  is the solution of zWx = . If we take another 
derivative 

Wxf
dx
d

=)(2

2

, 

we obtain the matrix W  which is positive definite ( wwW T= ), so that )(xf  can only 
increase if the vector x  moves away from zW 1− . This shows that zW 1−  is the global 
minimum of the functional )(xf . The sequence of vectors }{ )(kx  lies in increasingly 
large Krylov subspaces. Because the conjugate gradient method minimizes the 
functional )(xf  over these subspaces, this sequence of vectors tends to approach the 
solution zWx 1−= . When the iteration count k  is equal to the size of the system then, 
as a consequence of the Cayley-Hamilton theorem [20-21], the Krylov subspace 
becomes equal to the whole system space, and the vector )(kx  must be equal to zW 1− . 
If z  lies in a proper invariant subspace of the matrix W , then exact convergence 
occurs sooner.  
The implementation of conjugate gradient method should avoid forming the matrix 

wwW T= , since doing so may introduce large rounding errors. Thus, any product Wv  
should be calculated in two steps: wvu =  and then uwT . 
When the iterations start approximating singular vectors associated to small values, 
contributions from noise appear and the solution start to diverge at that point. This 
behaviour is known as semi-convergence. It is necessary to stop the iteration before 
the effect of noise appears. Thus, the number of iterations plays the role of the 
regularization parameter.  
The semi-convergence behavior suggests the following stopping criterion: monitor the 
residual norm and stop when it starts to increase. This is unfortunately not a very good 
stopping criterion. When the method reaches the minimum point, the residual 
becomes zero, and if the method is applied for one more step then a division by zero 
will result. It seems that one must stop immediately when the residual is zero. To 
complicate things, accumulated errors in the recursive calculation of the residual may 
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yield a false zero residual. Usually, however, one wishes to stop before convergence 
is complete. Because the error term is not available, it is customary to stop when the 
norm of the residual falls below a specified value; often, this value is some small 
fraction 0>ε  of the initial residual:  

)0()( rr k ε<  
In this case, the small parameter ε  plays the role of the regularization parameter. 
Below we give the pseudo-code of our implemented version of the conjugate gradient 
method: 

1. Initialize ε  and maxk  
2. 0←x  
3. wxu ←  
4. wuzwr T −←  
5. rd ←  
6. rεε ←  
7. 1←k  
8. while ( ε<r  and maxkk < ) do 

a) wdu ←  
b) rrT←β  
c) )( uuTβα ←  
d) dxx α+←  
e) wxu ←  
f) wuzwr T −←  
g) βγ rrT←  
h) drd γ+←  
i) 1+← kk  

9. return x  
The vector d  is the search direction, since x  is obtained from previous 
approximation by adding a scalar multiple of d . The vector r  is the residual error. 

Monte Carlo method 
One of the main criticisms of the above discussed regularization methods is that one 
cannot impose constraints on the solution. For example, we would like to be sure  that 
the solution is always positive. Therefore, we would like to solve the following 
problem: 

2min ywx
x

− ,  

subject to  
Jjx j ,...,1,0 =≥ . 

Obviously, this problem cannot be solved with the above discussed regularization 
methods. In order to solve this problem we consider a new stochastic Monte Carlo 
approach. Our Monte Carlo method is extremely simple and efficient. The only 
parameters are the amount of error allowed ε , the maximum number of random 
iterations M  and the number of trials K . This is a stochastic method, in which the 
solution is calculated using a built in mechanism for averaging over a number of 
iterations and a number of trials. The algorithm also has a built in mechanism for 
convergence. Our Monte Carlo method has the following pseudo-code: 
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1. Initialize ε , M  and K  
2. 0←x  
3. yεε ←  
4. For Kk ,...,1=  do 

a. yr ←  
b. For Mm ,...,1=  do 

i. },...,1{random Jj ←  

ii. 
2)()( −

← jj wrwc  

iii. If )0( <+ cx j  then jxc −←  
iv. cxx jj +←  

v. )( jcwrr −←  
vi. If ε<r  then break 

5. Kxx ←  
6. return x  

The algorithm begins with initializing the desired error ε  (the minimum proportion of 
y  that can be left in the residual r ), the maximum number of iterations M  (allowed 
per trial) and the number of trials K . Next, the vector of unknown coefficients x  is 
initialized to zero. For every trial Kk ,...,1=  one computes a solution of the problem. 
Each solution is calculated by initializing the residual with the right vector, y , and 
performing a number of maximum M  random iterations in order to minimize this 
residual. First, a random direction j  is selected with equal probability. Then one 
computes the projection c  of the residual on this direction. Here, )( jw  is the column 
vector j  of the matrix system w . If the corresponding coefficient jx  becomes 
negative (after updating), then the projection is limited such that the constraint is 
satisfied. The corresponding coefficient jx  and the residual are updated with the 
resulted projection. If the residual becomes smaller than the desired error, then the 
current solution calculation stops. One can see that the algorithm has an intrinsic 
mechanism for calculating the average of all K  solutions.  
Let us analyze the residual projection in more detail. Assuming that r  is the current 
residual and j  is the randomly selected direction, we can decompose the current 
residual on two orthogonal directions, one corresponding to the direction )( jw  and 
one corresponding to the future residual r ′ : 
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w
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⎜
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⋅=
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Because )( jw  and r ′  are orthogonal, we have: 
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⎞
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⎝

⎛
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The norm of the residual is therefore always decreasing: 
2222 )],(cos1[' rwrrr ≤−= , 

and the algorithm converges. This is the intrinsic, built in mechanism for 
convergence. Thus, our Monte Carlo algorithm always converges to a solution. 
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Numerical results and discussion 
We have applied the proposed deconvolution methods to several synthetic data cases. 
Both regularization methods, Tikhonov and Krylov, have performed well, showing 
very similar performances. However, the Monte Carlo method has shown superior 
performance in the presence of noise. 
These artificially created cases were considered mostly for their mathematical and 
numerical interest. Their purpose is solely to test the performance of the proposed 
deconvolution methods. Here, we do not give any interpretation and identification of 
the flow regimes observed on the solution. Identifying flow regimes, which appear as 
characteristic patterns displayed by the pressure derivative data, is important because 
a regime is the geometry of the flow streamlines in the tested formation. There are 
eight such common subsurface flow regimes on log-log plots (Fig. 2). For each flow 
regime identified, a set of well or reservoir parameters can be computed using only 
the portion of the transient data that exhibits the characteristic pattern behavior. We 
have performed a large number of synthetic tests. Here, we give only four such cases 
with the purpose of illustrating our methods (Figs. 3-6). One can see that most of the 
flow regimes can be identified in these cases. Also, the fourth case is a long history 
production case.  
In all analyzed cases, the data points are equally spaced in time and the initial pressure 
is 5000  Psi. First, we have considered the situation in which the noise level is zero. 
One can see that the pressure signal is accurately reconstructed. The logarithmic 
derivative (G ), calculated using the deconvolution methods corresponds perfectly to 
the values obtained using the Bourdet derivative (G~ ).  The deconvolution methods 
have the advantage of obtaining the derivative for the whole test duration, while the 
Bourdet derivative gives only a part of these values. We have considered the same 
cases but we added 5% noise to the pressure values. One can see that the Bourdet 
derivative cannot provide any meaningful information in this case, while the 
deconvolution results are still very good. In the last situation, we have the same 
amount of noise as before, but the deconvolution was performed using only the build-
up pressure points (the last build-up for the fourth case Fig. 6). In all described 
situations, the initial pressure was treated as an unknown. The calculated value was 

35000 ±≈ip  Psi (depending on the noise level), which is very close to the real 
value.  
Our calculations have shown that, for all considered cases, a number of 2015 ÷=J  
exponential basis functions with 3=γ  are enough to obtain good results. The range 
for the regularization parameters is: 103 1010 −− ÷=μ  for the Tikhonov method,  
respectively Nk =max  and 104 1010 −− ÷=ε  for the conjugate gradient method. The 
values of the regularization parameters (μ  and ε ) increase with the level of noise in 
the data. Therefore, the lower range values are for clean data (zero noise), while the 
higher range values are appropriate for noisy data. For the Monte Carlo method we 
have used the following parameters 310−=ε , 510=M  and 10=K .  
We have applied the presented methods to two sets of real field data. The best results 
have been obtained with the Monte Carlo method and are shown in Figs. 7-8. 
The first case (Fig. 7) is a well test in which we know the rate signal for the whole test 
period and we know the pressure signal only for the build-up. There are 2802=N  
data points, however the pressure is known only for the last 2502 points. The initial 
pressure is 18600  Psi. One can see that the pressure signal is very well reconstructed 
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for the known and the unknown period. Also, the logarithmic derivative looks very 
good, showing the expected flowing regimes.  
The second case is a long history production case, where the initial pressure is 1330 
Psi and all the history data of rate and pressure is known. There are 8655=N  data 
points. One can see that the reconstruction is very good and the logarithmic derivative 
is very well defined on the whole time interval.  

Conclusions  
We have shown that the solution of the deconvolution problem can be successfully 
represented as a sum of exponential basis functions. This approach is justified by the 
fact that in well-test and production data analysis we are interested in the transient 
response, which for a stable linear system is a linear combination of exponential 
functions. Also, we have derived three deconvolution algorithms. The first two 
algorithms are based on regularization concepts borrowed from the well-known 
Tikhonov and Krylov methods, while the third one is a new stochastic Monte Carlo 
algorithm. 
Tikhonov regularization is stable and feasible only for small to average number of 
data points, due to the large round-off error accumulations in the matrix inversion step 
(if the number of data points increases). The conjugate gradient method is 
recommended for small to large number of data points. There are other several 
advantages of the conjugate gradient method: 
- there is no need to perform the inversion of the system's matrix; 
- the system's matrix is involved only in matrix-vector product operations; 
- requires very little storage; 
- it has a fast convergence. 
The best results have been obtained with the Monte Carlo method which has several 
advantages: 
- it can handle easily large amount of data; 
- the data is involved only in vector-vector computation; 
- the requirements for storage are very low; 
- there is no need for additional tuning parameters; 
- it is very robust to noise and it does not get stuck in local minima like the 
deterministic methods. 
However, the Monte Carlo method is slower than the other methods.  
We have considered the case in which the initial pressure is not known, and therefore 
it must be treated as one of the variables in the problem. In this case, our analysis has 
shown again that the exponential basis functions decomposition method gives a 
robust, meaningful solution in the presence of moderate levels of noise (<5%).  
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Figures 
 

 

Figure 1  - Exponential basis functions on a log-log plot scale.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 - 18 - 

 

 

 

Figure 2  - Flow regime identification tool. 
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Figure 3  - Synthetic case I. 

(a) q -flow rate; (b) p -pressure; P -reconstructed pressure; G~ -Bourdet derivative; 
G -deconvolved derivative (c) zero noise, all pressure history (d) 5% noise, all 
pressure history; 5% noise, build-up pressure data only ( 100≥t ). 



 - 20 - 

Figure 4  - Synthetic case II. 

(a) q -flow rate; (b) p -pressure; P -reconstructed pressure; G~ -Bourdet derivative; 
G -deconvolved derivative (c) zero noise, all pressure history (d) 5% noise, all 
pressure history; 5% noise, build-up pressure data only ( 200≥t ). 
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Figure 5  - Synthetic case III. 

(a) q -flow rate; (b) p -pressure; P -reconstructed pressure; G~ -Bourdet derivative; 
G -deconvolved derivative (c) zero noise, all pressure history (d) 5% noise, all 
pressure history; 5% noise, build-up pressure data only ( 400≥t ). 



 - 22 - 

Figure 6  - Synthetic case IV. 

(a) q -flow rate; (b) p -pressure; P -reconstructed pressure; G~ -Bourdet derivative; 
G -deconvolved derivative (c) zero noise, all pressure history (d) 5% noise, all 
pressure history; 5% noise, build-up pressure data only ( 80≥t ). 
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Figure 7  - Field case I. 

(a) q -flow rate; (b) p -pressure; P -reconstructed pressure; (c) G~ -Bourdet derivative; 
G -deconvolved derivative. 
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Figure 8  - Field case II. 

(a) q -flow rate; (b) p -pressure; P -reconstructed pressure; (c) G~ -Bourdet derivative; 
G -deconvolved derivative. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


