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AbstractAbstractAbstractAbstract    

  

This work presents a unified treatment of non-ideality that ties together the ubiquitous concepts of 
compressibility factor, Joule-Thomson coefficient, fugacity coefficient, and fugacity that are routinely used in 
natural gas engineering. The development is based on the identification of common misconceptions and the 
construction of a unified approach for the analysis of non-ideality. Starting with the basic ideal equation of 
state, an integrated treatment is progressively built in which the concept of non-ideality is thoroughly reviewed 
and its implications for natural gas engineering extensively discussed. The treatment of non-ideality given here 
is unique in scope and non existent in the available natural gas engineering literature. In the second part of this 
series, the implications of the non-ideality for natural gas engineering are reviewed and discussed. 

 

 

IntroductionIntroductionIntroductionIntroduction    
In the first part of this series1, a graphical interpretation 
of the concept of Z-factor and fugacity coefficient was 
presented. The compressibility factor (Z) was presented 
as a volumetric multiplier that, when applied to an ideal 
EOS prediction, was capable of generating real fluid 

volumetric data. The fugacity coefficient (φ) was 
presented as the thermodynamic property that measures 
non-ideality as a function of the magnitude of the area 
between curves generated by the lack of compliance 
between real volumetric data and ideal predictions. 

The introduction of “Z” in our engineering calculations is 
based on our need of extending the applicability of the 
all-convenient ideal equation of state even for conditions 
of pressure and temperature where the ideal model is 

not applicable. The concept of compressibility factor 
can then be presented as the ratio of actual fluid 
volume to ideal volume predicted by the ideal EOS, as 
shown below: 

 

ideal

real

v

v
Z = ,    ……..(1) 

 

which is just a reinforcement of of the idea that Z 
operates as a multiplier to videal that generates vreal. 
When “v” refers to the real, experimental value of 
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molar volume at the given pressure and temperature, the 
fact that Z just acts as a multiplier that forces the ideal 
volumetric prediction (RT/p) to generate actual 
experimental values of molar volume generates the 
following equation: 

 

v
p

RT
Z =








⋅     …………(2) 

 

Or, 

 

RT

pv
Z ≡     …………(3) 

 

Equation 3 is usually given as the definition of the 
compressibility factor. Equation 3 can be written to 
resemble the ideal EOS, as follows: 

 

ZRTpv = ,    …………(4) 

 

which is the omnipresent equation used in gas 
engineering calculations (i.e, the “real gas” equation of 
state). In this paper, the implications of non-ideality in 
terms of compressibility inversion, energetic inversion, 
and liquid/vapor equilibrium are analyzed. 

Implications of NonImplications of NonImplications of NonImplications of Non----ideality: The Compressibility ideality: The Compressibility ideality: The Compressibility ideality: The Compressibility 
InversionInversionInversionInversion    
Figure Figure Figure Figure 1111 displays the behavior of the compressibility 
factor (Z) with respect to pressure and temperature. 
Figure 1 was generated using real volumetric data for 
methane as predicted by the popular Peng-Robinson 
EOS2—a cubic EOS.  Cubic EOSs are based on van der 
Waals ideas, the first physicist to introduce meaningful 
pressure and volume corrections to the ideal model and 
who enunciated the principle of the corresponding states 
(PCS). According to the PCS, all fluids have the same 
compressibility factor when they are found at 
corresponding states. Two fluids are said to be in 
corresponding states when they have same reduced 

conditions (i.e., same pr, Tr, and same acentric factor, 
for the case of the three-parameter PCS). Most 
hydrocarbons and thus natural gases would then reveal 
approximately the same volumetric behavior, in terms 
of Z, shown in Figure 1 as long as the appropriate 
reduced conditions are considered. 

Figure 1 shows a useful p-T mapping of iso-Z lines for 
a variety of conditions of pressure and temperature. 
Regions where “Z” takes the value of one (or close to 
one) constitute all possible combinations of pressure 
and temperature for which the ideal EOS generates 
reliable volumetric predictions. This region is 
highlighted in dark grey in Figure 1. Since liquid-solid 
transitions are not predicted by the Peng Robinson 
EOS (or any other cubic EOS for that matter), the 
solid region and solid/liquid line presented in Figure 1 
has been superimposed on the figure based on the 
methane experimental data compiled by IUPAC3. The 
predicted vapor/liquid transition or vapor pressure 
curve (which starts at the triple point and ends at the 
critical point pr=Tr=1) is also highlighted. The lower 
end of the vapor pressure curve (methane’s triple 
point) is found at pr=0.0025 and Tr=0.4759, a condition 
which cannot be predicted by cubic EOSs. It should be 
noted that any cubic EOS would still generate liquid 
volumetric values for the region Tr < Trtriple, where no 
liquid is present. 

If all conditions found to the right of the vapor 
pressure curve are considered “gaseous” states, it 
would become clear that the smallest gas Z-factors 
(i.e., the largest deviations from ideality) are found 
around the critical point conditions (pr = Tr = 1). Cubic 
EOSs predict the same critical compressibility factor 
(Zc, Z at pr=Tr=1) for all fluids—which is a direct 
consequence of the principle of corresponding states. 
As Figure 1 indicates, the Peng Robinson EOS predicts 
a universal Zc = 0.307 for all fluids. In reality, Zc–values 
are not exactly the same for all fluids and they range 
between 0.23 and 0.31. For methane, Zc is actually 
equal to 0.2863. On the other hand, the region where 
minimum deviations from ideality take place, i.e., the 
region where fluid volumetric behavior is exactly 
predicted by the ideal EOS (Z=1) and its vicinity (0.99 
< Z < 1.01), is shown in grey in Figure 1. The figure 
corroborates that fluids can be said to behave “ideally” 
at low pressures (i.e., pr < 0.25, regardless of 
temperature) and at high temperatures if pressures are 
not too high.  It should be noted that for pressures pr 
>> 7, Z-factors are always greater than one, which 
indicates that the ideal model would consistently 
underpredict volume at those conditions.  
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Figure 1Figure 1Figure 1Figure 1: Non-Ideality in the p-T plane: the compressibility inversion 

 

Liquid states, found to the left of the critical point and 
above vapor pressure conditions, have compressibility 
factors that can range from Z=0.01 or below (at low 
pressures and temperatures) up to Z=1.50 or more (at 
high pressures). It is important to indicate that liquids can 
indeed exhibit compressibility factors equal to one (Z=1). 
Note that Z=1 isoline extends well into the liquid region 
and up to the solid/liquid transition. As discussed in the 
preceding article of this series1, this has little to do with 
the fluid behaving ideally at those conditions but is rather 
the consequence of repulsion forces dominating the 
behavior of the liquid. Cubic EOSs, such as the one used 
to generate Figure 1, are also known for generating poor 
liquid density predictions (i.e., poor Z-factor predictions 
for liquids). However, they are capable of reproducing a 
good qualitative prediction of volumetric behavior, which 
is the main interest of this work. 

The close resemblance between the names 
compressibility factor—Z, a measure of non-ideality—
and isothermal compressibility factor—cf, the measure of 
the relative change of volume of a fluid with changes in 
pressure at constant temperature—may be seen as 
unfortunate but it is justified. The term compressibility 
represents the ability of a fluid be compressed or the 
degree to which a fluid can undergo a reduction in 
volume under pressure. Even though the compressibility 
factor (Z) does not measure this type of compressibility, 

it does control it. This can be better elucidated by 
recalling that Z-factor and fluid isothermal 
compressibility (cg) are related through the equation: 
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Equation 5 demonstrates that whether a fluid is more 
easily compressed than its ideal counterpart depends 
on the sign of (dZ/dp)T. Fluids are more easily 
compressed than their ideal counterpart when cf > 
cg(ideal), which occurs when (dZ/dp)T is negative. Fluids 
with cf < cg(ideal) are less compressible than their ideal 
counterpart, and a positive (dZ/dp)T would be an 
indicator of that. Therefore, the condition (dZ/dp)T=0 
defines what could be defined as a compressibility 
inversion curve, shown in Figure 1 with a broken line. 
Under most conditions of interest (inside the 
compressibility inversion curve), natural gases are 
more compressible than their ideal counterparts. 
Outside of the inversion curve, fluids are less 
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compressible than their ideal counterpart at the same 
pressure and temperature condition. For instance, ideal 
gases will compress to a third of their volume when the 
confining pressure is tripled (Boyle’s law), but this would 
not be true for real gases. In reality, natural gases are 
found to be more compressible than what the ideal 
model would predict. The use of compressibility factors 
can effectively correct this compression discrepancy, as 
indicated below: 

 

If  3

1

2 =
p

p
  � 

1

2

1

2

3

1

Z

Z

v

v
⋅=      

(at constant temperature)   …………(6) 

 

Equation 6 shows that the volume of a real gas will, in 
fact, decrease to less than one-third of the original 
volume as long as Z2/Z1 < 1, which is the case when the 
isothermal compression takes place inside the inversion 
curve. Inside the inversion curve, attraction forces 
dominate molecular behavior and will effectively act to 
shrink the fluid to a volume smaller than what is 
predicted by the ideal model. Outside the compressibility 
inversion curve, repulsion forces start counteracting 
attraction forces and the fluid would not shrink as much 
(Z2/Z1 > 1). It is important to indicate that the 
compressibility inversion curve represents the locus of all 
minimum Z’s that show up in typical Z vs. p charts. In a 
typical Z vs. p chart (e.g., see Figures 6 and 7 in Ref. 1), 
isotherms start at Z=1 at p=0 and then take values Z <1 
with increasing pressure [(dZ/dp)T < 0] up to the point 
of compressibility inversion [where (dZ/dp)T = 0]. At 
pressures higher than the compressibility inversion 
pressure, Z increases with increasing pressure [(dZ/dp)T 
> 0]. Note that at temperatures Tr > 3, compressibility 
inversion does no longer exist for those isotherms (i.e., 
(dZ/dp)T is always positive). 

Figure 2Figure 2Figure 2Figure 2 displays lines of constant isothermal 
compressibility values, calculated via equation 5 using the 
data presented in Figure 1. Isothermal compressibility 
values are given in reduced units (cr = pc * cf). It is 

evident in this figure that fluid compressibility is a 
strong function of pressure and temperature, and that 
it takes its largest values in the low-pressure gas region 
and its smallest values in the liquid region. Vapors right 
below the vapor pressure curve represent the most 
compressible state of a substance. It is evident that the 
vapor pressure curve marks a sharp discontinuity in 
the compressibility values and behavior of a substance. 
In addition, Figure 2 shows that liquid compressibility is 
a weak function of pressure. That justifies the 
traditional approach of assuming liquids to have an 
approximately constant cf within reasonable pressure 
ranges—the basis of the “slightly compressible fluid” 
model used in numerical simulation. It should be noted, 
however, that liquid compressibility is a strong function 
of temperature. And while fluid compressibility tends 
to increase with temperature for all fluids outside the 
compressibility inversion curve, compressibility tends 
to decrease with temperature inside the inversion 
curve. In addition, the iso-cr lines are rather flat in 
regions of low pressure and high temperature. At such 
conditions, fluids behave near ideally and the 
compressibility is thus independent of temperature.  

Typical cr’s for reservoir natural gases ranges between 
0.1 and 1.0. Compressibility is an important property 
in natural gas engineering. The behavior of fluid volume 
with pressure is key in the transient analysis and 
modeling of oil and natural gas engineering systems. 
For example, fluid compressibility is one of the fluid 
properties that control the speed at which a pressure 
disturbance will propagate through a hydrocarbon 
reservoir, an important consideration in the field of 
pressure transient analysis. Compressibility behavior is 
also a paramount consideration in the design of 
handling facilities. In this section, it has been 
established that the derivative (dZ/dp)T is instrumental 
for the description of the compressibility behavior of 
fluids and the definition of the compressibility inversion 
curve. When a fluid (such as a liquid or high pressure 
gas) is found outside the compressibility inversion 
curve, it becomes less compressible than its ideal 
reference and its compressibility becomes much more 
sensitive to temperature changes and increases with 
temperature. Fluids inside the inversion curve are 
more compressible than ideal gases and their 
compressibility decreases with temperature. 
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Figure 2Figure 2Figure 2Figure 2: Lines of constant isothermal compressibility 

 

Implications of Implications of Implications of Implications of NonNonNonNon----idealityidealityidealityideality: The Energet: The Energet: The Energet: The Energetic ic ic ic 
InversionInversionInversionInversion    

 

Figure Figure Figure Figure 3333 takes a second look at the Z-factor data 
generated by the Peng-Robinson EOS for the case of 
methane. In this section, it is demonstrated that the 
concept of non-ideality (measured via Z-values) not 
only controls the behavior of fluid compressibility, but 
also effectively describes their energetic behavior. One 
key concept in the description of energetic behavior is 
the Joule-Thomson coefficient. The Joule-Thomson 
coefficient (µ ) is the mathematical measure of the 
effect of pressure drop on temperature during 
throttling or isenthalpic expansions. The effect of 
throttling has a number of important applications in 
natural gas engineering and the temperature change 
that results of letting a fluid freely expand from a 
higher to a lower pressure is frequently called the 
Joule-Thomson effect. The Joule-Thomson coefficient 
is thermodynamically related to Z-factor through the 
following expression: 
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where cp = constant pressure heat capacity. Since cp is 
never zero, equation 7 shows that the condition 

( ) 0/ =∂∂ pTZ  is sufficient to define the condition 

0=µ  or energetic inversion locus. And because all 

terms other than the Z-factor derivative are always 
positive, equation 7 also shows that the sign of the 
Joule-Thomson coefficient directly depends on the sign 

of ( )pTZ ∂∂ / . All transition points where (dZ/dT)p 
takes a zero value define the energetic inversion curve 
depicted in Figure 3. Cooling occurs when µ  (i.e., 
dZ/dT) is positive—i.e., inside the inversion 

envelope—and heating occurs when µ  (i.e., dZ/dT) is 
negative—i.e., outside the inversion envelope.  

 



E-Journal of Reservoir Engineering   Petroleum Journals OnlinePetroleum Journals OnlinePetroleum Journals OnlinePetroleum Journals Online 

 Page 6 of 9 
(page number not for citation purposes) 

 

 
 

Figure 3Figure 3Figure 3Figure 3: Non-Ideality in the p-T plane: the energetic inversion 

 

In the previous section, (dZ/dp)T effectively defined a 
compressibility inversion curve. Figure 3 demonstrates 
that the derivative (dZ/dT)p also defines a new boundary 
that marks an important change in the thermodynamic 
behavior of natural gases. This behavior of Z with 
temperature has significant implications for the 
thermodynamics of natural gases. As discussed above, 
when the term (dZ/dT)p is positive (i.e, the fluid is found 
at conditions inside the energetic inversion curve in 
Figure 3), the free expansion of the fluid would lead to its 
cooling—such as what happens when natural gas enters 
separators or when it crosses chokes or valves. Natural 
gases typically reduce their temperature when they 
undergo adiabatic expansion, and this is controlled by the 
behavior of the derivative (dZ/dT)p. When (dZ/dT)p is 
negative, such expansion would result in an increase of 
fluid temperature instead. Natural gases are known to 
cool upon isenthalpic expansion, and this fact is 
commonly used in the production of LNG (liquid 
methane). The reduction in fluid temperature needed in 
natural gas liquefaction systems is typically achieved by 
throttling—the isenthalpic process of changing the 
temperature of a fluid by adiabatic expansion. For cooling 
upon isenthalpic expansion to be possible, the non-ideal 
behavior of the natural gas fluid has to be such that 
(dZ/dT)p should take a positive value within the region of 
operation.  

Ideal gases do not change their temperature upon 
throttling. Even though the “ideal region” for this fluid 
(grey region in Figure 1) is contained inside the 
inversion envelope, truly ideal gases neither cool nor 
heat upon isenthalpic expansion because dZ/dT is 
identically zero for ideal gases (i.e., Z=1 at all 
conditions). Real fluids approach such behavior at high 
temperatures (Tr > 3) and pressures below pr = 10, 
because iso-Z curves are approximately flat and 
changes in Z with temperature become much less 
significant (see Figure 3). In summary, fluids found 
within the left “half” of the inversion curve (close to 
the critical point of the fluid) will experience much 
larger temperature drops during throttling—such as 
when natural gases expand into separators or at 
chokes in wellheads—than fluids found within the 
“right” half of the inversion dome. It should be noted 
that the energetic inversion curve completely encloses 
the compressibility inversion curve because it extends 
through a much larger area in the p-T plane. 
Therefore, it is concluded that all fluids that are more 
compressible than their ideal counterparts will always 
cool upon isenthalpic expansion. The location of both 
inversion curves should be regarded as approximate, 
since different equations of state would predict slightly 
different locations for both curves. 
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An important realization that should be visualized in 
Figure 3 is that liquids have p-v-T properties that cause 
them to rise in temperature when they are expanded 
adiabatically, while gases usually show the opposite effect. 
Liquid systems typically operate above the vapor-
pressure curve and below critical conditions, i.e., within 
the region that is found to the left and outside of the 
inversion curve. Therefore, liquid hydrocarbon systems 
would typically heat upon adiabatic expansion—because 
(dZ/dT)p is negative for such conditions. In contrast, 
most natural gas systems operate at Tr > 1 and inside the 
inversion curve, and consequently their volumetric 
behavior [(dZ/dT)p > 0] would cause them to drop their 
temperature upon adiabatic expansion (i.e., “Joule-
Thomson cooling”).  The transition from cooling to 
heating, represented by the inversion envelope, starts 
around 0.80 < Tr < 0.90 and can be used to distinguish 
liquid-like from gas-like thermodynamic behavior when 
fluids are single phase, especially around critical 
conditions (pr = Tr = 1).  

Fugacity and nFugacity and nFugacity and nFugacity and nonononon----iiiidealitydealitydealitydeality    
The previous two sections have shown that the concept 
of non-ideality, and even more importantly, non-ideality 
changes with pressure and temperature [(dZ/dT)p and 
(dZ/dp)T] are the cornerstones of a true understanding 
of fluid behavior in natural gas engineering. Another 
important concept for the understanding of the 

implications of non-ideality in natural gas engineering is 
that of fugacity and fugacity coefficient. Figure Figure Figure Figure 4444 maps 
the behavior of fugacity coefficient with pressure and 
temperature, based on the predictions of “vreal” 
generated for methane using the Peng-Robinson EOS 
and  the definition of fugacity coefficient given in 
equation 8 and discussed in part A of this series1: 

 

[ ]∫ −=
p

ideal
dpvvRT

0

lnφ   

@ a given temperature   ……….(8) 

 

It can be corroborated in Figure 4 that at the lower 
end of the integration range (pr � 0), all fugacity 
coefficients are equal to one. For most pressures and 

Tr < 2, fugacity coefficients are smaller than one (φ < 
1), which indicates that real volumetric isotherms (vreal) 
are mostly found to left of the ideal isotherm (videal) at 
such conditions. At high temperatures (Tr > 3), fugacity 
coefficients are larger than one because, as already 
seen in Figure 1 and 3, the ideal model tends to 
underpredict real data (Z > 1) at those conditions.  

 

 

 

Figure 4Figure 4Figure 4Figure 4: Methane fugacity coefficient in the p-T plane 
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For pure substances, fugacity coefficient is related to 
fugacity through the following ratio: 

 
p

f
=φ     …………(9) 

As a consequence of this definition, fugacity is looked 
upon as a modified pressure since equation (8) can be 
rearranged to show that: 
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Fugacity characterizes the escaping tendency of the 
molecules from one phase to the other. Fugacities and 
chemical potentials are the driving forces for mass 
transfer between two phases. In the heart of it, fugacity is 
a representation of the Gibbs free energy of a fluid. For 
pure substances, fugacity and Gibbs free energy are 
related through the expression: 

 

fRTddG ln=  @ const T ………...(11) 

with pf
p

=
→0

lim . 

 

This expression constitutes the equation by which 
fugacity is defined and related to all other energetic 
properties of the fluid. Thermodynamic equilibrium 
requires both phases to have the same Gibbs free 
energy, and such requirement implies that the fugacities 
of both phases are equal. For multicomponent mixtures, 
each component has a value of fugacity that can be 
associated to it, per phase, and that will controls its 
movement (mass transfer) between the two phases. For 
instance, when the fugacity of methane is higher in the 
liquid than it is in the gas, methane will transfer 
(vaporize) to the vapor phase. Mass transfer will stop 
when there are no longer any driving forces for mass 
transfer.  

Fugacity is a powerful tool in thermodynamics and it is 
the key tool utilized in the prediction of phase 

equilibrium both for pure substances and complex 
mixtures in natural gas engineering. Many natural gas 
engineering applications operate on hydrocarbon phase 
behavior principles. Analysis of separation equipment, 
multiphase flow in natural gas reservoirs, wellbores 
and pipelines, LNG and NGL processing, LNG tankers, 
and natural gas storage is based on phase behavior 
principles. Take, for example, the case of methane 
liquefaction operations. Figure Figure Figure Figure 5555 presents a mapping of 
the values of fugacity coefficient of methane, as 
predicted by the Peng-Robinson EOS, around the 
conditions of methane liquefaction conditions 
(methane vapor pressure curve). The location of the 
liquid/vapor transition in Figure 5 was delineated using 
the concept of fugacity and fugacity coefficient 
discussed above, which is entirely based on volumetric 
data. The methane liquefaction line is identified as the 
line where the fugacity of the liquid and the fugacity of 
gas are identical. A notorious change in slope of the 

iso-φ lines also helps the identification of the vapor 
pressure line. It should be noted that even though both 

Z and φ measure departure from non-ideality, their 
behavior along the vapor/liquid co-existence region is 
quite distinct. Z is used to generate density values, and 

φ is used to generate fugacity values. On the one hand, 
two co-existing phases along the vapor pressure curve 
must have different Z-factor values because both 
phases have different densities. This density difference 
will obviously disappear as the critical point is 
approached. On the other hand, two co-existing 
phases along the vapor pressure curve must have the 
same fugacity coefficients, because both phases must 
have the same fugacity at all points of the vapor 
pressure curve. 

Liquefaction of methane is an important industrial 
process that produces LNG (liquefied natural gas)— 
the liquefied version of methane at ultralow 
temperatures or about 110 K at atmospheric pressure. 
Transportation of natural gas across the oceans 
requires its transformation to a condensed form 
(LNG) that can minimize volume storage 
requirements. What is commonly done to liquefy 
gaseous methane is to compress it to a high pressure, 
cool it at constant pressure to a low temperature, and 
then expand it to a low pressure and even lower 
temperature through a Joule-Thomson expansion in 
order to cause its liquefaction. LNG operations are the 
prime example in natural gas engineering where the 
concepts of non-ideality, Z-factor, Joule-Thomson 
effect, and liquid-vapor phase behavior concepts are 
brought together under the same umbrella. All these 
concepts have been discussed in this paper and it has 
been shown that all of them have their roots in the 
non-ideal behavior of natural gases. 
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Figure 5Figure 5Figure 5Figure 5: Fugacity coefficient and the gas/liquid transition region 

 

Concluding RemarksConcluding RemarksConcluding RemarksConcluding Remarks    
In this two-article series, the concepts of non-ideality, 
Z-factor, Joule-Thomson coefficient, and fugacity, have 
been analyzed and extensively reviewed. Hydrocarbon 
phase behavior deals with the analysis of oil and gas 
engineering systems, in which hydrocarbon fluids 
undergo many property-altering intermediate stages. 
Understanding of fluid phase behavior—i.e., the 
volumetric behavior of all possible fluid phases as a 
function of pressure, temperature, and composition—
is essential for optimal design and safe and efficient 
operation of engineering systems dealing with fluids.  
Using ideal behavior as the benchmark behavior of 
reference, this study has proposed a unified approach 
for the analysis of non-ideality and its implications for 
many applications in natural gas engineering.  

NomenclatureNomenclatureNomenclatureNomenclature    
 
cf = fluid’s isothermal compressibility (Pa-1) 
cr = fluid’s reduced isothermal compressibility 
(dimensionless) 
f = fugacity (Mpa) 
G = Gibbs free energy (KJ/mol) 
p = pressure (Mpa) 
pc = critical pressure (Mpa) 

pr = reduced pressure (dimensionless) 
R = gas universal constant (R = 8.314 cm3 Mpa/mol-K) 
T = temperature (K) 
Tc = critical temperature (K) 
Tr = reduced temperature (dimensionless) 
v = molar volume (cm3/mol) 
Z = compressibility factor (dimensionless) 
Zc = critical compressibility factor (dimensionless) 

φ = fugacity coefficient (dimensionless) 

µ = Joule Thomson coefficient (K/MPa) 
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