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Abstract 

Numerical simulation has become a common means of predicting performance of oil and gas reservoirs in 
the petroleum industry. It is also a time-consuming task due to the large dimension of the simulation grids 
and computing time required to complete a simulation job. Commercial software packages used in the 
petroleum reservoir simulation employ the first-order-accuracy finite difference method to solve the 
convection-diffusion equation. This method introduces numerical dispersion because of truncation error 
caused by neglecting higher-order terms in Taylor’s expansion. 
 
This study focused on providing solutions to the above problems. We developed and tested two new 
algorithms to speed up computation and minimize numerical dispersion. In this research, we have derived 
the second- and third-order accuracy finite difference formulations to solve the convection-diffusion 
equation and applied a counter-error mechanism to reduce numerical dispersion. The results indicated 
that the use of the second- and third-order accuracy finite difference formulations can speed up numerical 
simulations and retain a sharp displacing front controlled by the physical diffusion coefficient. 

 
Introduction 

Numerical simulation has become a common means of 
predicting performance of oil and gas reservoirs in the 
petroleum industry. It has been widely used for 
simulations of primary, secondary, and tertiary oil and 
gas recovery processes. However, even with modern 
computing technologies, numerical reservoir simulation 
is still a time-consuming task. Depending upon the 
dimension of the simulation grids, the computing time 
required to complete a simulation job varies from a 
few days to a few weeks. The low-speed simulation 
runs hinder the application of the technology to large-
dimension reservoirs. 

Commercial software packages used in the 
petroleum industry for reservoir simulation employ 
the first-order-accuracy finite difference method to 
solve the diffusivity equation for pressure and fluid 
saturation distributions in the reservoirs. The most 
widely used technique is the implicit-pressure 
explicit-saturation (IMPES) algorithm. For a given 
dimension of simulation grids, the speed of 
computation is controlled by timestep size (∆t).  
While large ∆t causes instability of algorithm, small 
∆t induces high-level numerical dispersion.  
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The convection-diffusion equation exhibits many of the 
features of petroleum reservoir simulation equations. 
It can be written in the form of 
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where φ  is porosity of porous medium, u is 
convective rate, D is diffusion coefficient, C (x,t) is 
normalized concentration, x is location, and t is time. In 
the real reservoir simulations, the function C (x,t) can 
also represent pressure function and saturation 
function. The constant D can also represent reservoir 
transmissibility k/µ, where k is effective formation 
permeability and µ is fluid viscosity.  

The convection-diffusion equation can be extended for 
simulations of enhanced oil recovery (EOR) by miscible 
displacement,1-5 immiscible displacement,1-4 and thermal 
methods.2,5 Therefore, most discussions on the effects 
of numerical dispersion and algorithm stability have 
adopted Equation (1) as an original equation.1-3, 5-7 

Distortion of numerical solution of Equation (1) is 
most significant in the simulation of EOR processes3 
where sharp displacement, concentration or 
temperature fronts play important roles in the 
efficiency of the processes, and the artificial smearing 
as a result of numerical dispersion can render the 
simulation result meaningless. The numerical 
dispersion minimization has been an open problem in 
the petroleum reservoir simulation studies. 

A number of investigators have studied the numerical 
dispersion problem, and several alternative solution 
techniques have been proposed to overcome the 
difficulties. These techniques include the method of 
characteristics,8,9 modified random choice methods,10,11 
and various flux-updating schemes.3 Although the 
method of characteristics is capable of producing exact 
solutions for certain simple problems, its use as a 
general simulation tool is limited by the complexity of 
the computer codes required to apply the method to 
general three-dimensional multiphase-flow problems. 
Both of the random choice and flux-updating methods 
are based on the method of characteristics, and the 
use of these two methods is also limited by their 
complexity. Although the variational methods11-15 have 
been shown to produce solutions that are more 
accurate than those obtained with simple finite-
difference techniques, their practical uses in reservoir 
engineering problems are again limited by their 
complexity and computational expense. The simplicity 
and generality of finite-difference techniques make 
them attractive. Thus the majority of commercial 

simulators still use the finite-difference form of 
approximation in the convection-diffusion equation. 

Lantz2 was the first to quantify numerical dispersion 
in one-dimensional equations such as Equation (1). 
His formulation was used by Peaceman1 to 
characterize numerical solutions to such equations 
and proved useful in interpreting the results of a 
simple chemical-flood model,16,17 where the 
predicted oil recovery was strongly dependent on 
gridblock size. Fanchi18 generalized Lantz’s 
formulation to three dimensions. Laumbach,5 Price19 
and Todd20 used second-order approximations to 
control numerical dispersion. Stone and Brian4 used 
a Fourier analysis to improve the accuracy and 
stability of the numerical solution to Equation (1). 
Taggart and Pinczewski21 proposed a uniformly 
second order finite-difference scheme capable of 
accurately simulating flows characterized by sharp 
fronts and low levels of physical dispersion. Fleming 
and Mansoori22 proposed a solution method to the 
convection-diffusion equation, which combines the 
important parts of Lantz’s formulation, Peaceman’s1 
work, Stone and Brian’s4 method, and Laumbach’s5 
technique. To the best of our knowledge, those 
methods and techniques either lack generality or are 
too complicated to be economically used on a 
commercial scale.  

In the current practice of reservoir simulation in the 
petroleum industry, Equation (1) is solved by finite 
difference approximation with the first-order of 
accuracy. The numerical formulation with an explicit 
scheme is expressed as: 
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where 
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i ,1 ∆+=+           .   

As shown by Wang,23  this scheme is stable under 
the following condition: 
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For typical values of parameters used in tracer flow 
simulation with local refinement of grids (φ  = 0.3, u = 
0.001 cm/s, D = 0.00006 cm2/s, and ∆x = 10 cm) the 
maximum value of timestep size ∆t is only 2,964 
seconds, or 0.034 day. Because of the low value of ∆t 
for the explicit scheme of numerical formulation, 
implicit schemes are normally used in commercial 
software packages. Numerical formulation with an 
implicit scheme is expressed as: 
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where  

( )ttxxCC n
i ∆+∆−=+
− ,1
1            

( )ttxxCC n
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+ ,1

1          .   

Although this numerical formulation allows the use of 
much higher values of ∆t to speed up computing while 
still maintaining numerical stability, the accuracy of the 
simulation results suffer due to numerical dispersion. 
This can make the simulation result meaningless.  

With today’s computing technologies, numerical 
reservoir simulation is still a time-consuming task and 
the accuracy of simulation results is often not 
satisfactory. Better numerical algorithms are needed to 
speed up simulation runs and improve simulation 
accuracy. The objective of this research was to 
develop a new finite difference method for improving 
the accuracy of reservoir simulation while still 
increasing the computing speed necessary for large-
dimension simulation grids. The goal of this work was 
to formulate and test two new algorithms for solving 
the convection-diffusion equation, Equation (1), with 
reduced error by minimizing numerical dispersion. 

New Methods 

Two numerical methods for solving the convection-
diffusion equation were developed in this study. They 
are finite difference formulations with second-order 
and third-order accuracies. It is known that an implicit 
formulation will always produce more dispersion than 
an explicit formulation.24 However, we used explicit 
formulations in this study to simplify the testing 

procedure. Testing of these two methods with 
implicit formulations are being carried out at time of 
this writing.  

Explicit Finite Difference Formulation with 
First–Order Accuracy. The widely used finite 
difference form of Equation (1) with the first-order 
accuracy is expressed as: 
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Equation (5) introduces numerical dispersion due to 
truncation error caused by neglecting higher-order 
terms in Taylor’s expansion. The magnitude of the 
numerical dispersion can be revealed in the following 
sections where two new methods are presented. 

Explicit Finite Difference Formulation with 
Second–Order Accuracy. Derivation of an 
explicit finite difference formulation with second-
order accuracy is documented by Wang.23 The result 
indicates that Equation (5) represents more closely 
the following partial differential equation rather than 
Equation (1): 
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Derivation of Eq. (6) is too lengthy to be included in 
this paper. It is available from the authors upon 
request.  

Comparing Equation (1) and Equation (6) indicates 
that the latter has an additional term  

φ
φ

2

2 tuxu ∆−∆
 

that will generate artificial (numerical) dispersion. 
Although this artificial dispersion can be eliminated 
by choosing an optimal value for the timestep size 
value ∆t so that  
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will also generate error. Since the physical diffusion 
coefficient D takes very low values in reservoir 
simulation, term  
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 is proportional to timestep size ∆t.  

In order to minimize the numerical dispersion caused 
by these additional terms that are created by 
discretization, a counter-error mechanism was used in 
this study. The counter-error mechanism involves 
arbitrarily subtracting those error-causing terms from 
the original differential equation before the equation is 
discretized. When applied to Eq. (1), the following 
equation is obtained: 
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To simplify the equation, let  
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Equation (7) may be rewritten as: 
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Using the backward difference method, the 
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Explicit Finite Difference Formulation with 
Third–Order Accuracy. Derivation of an explicit 
finite difference formulation with third–order 
accuracy was presented by Wang.23 The result 
indicates that Equation (5) represents even more 
closely the following partial differential equation than 
Equation (1): 
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Again, derivation of this equation is available from the 
authors upon request.  

Comparing Equation (1) and Equation (10) indicates 
that the latter again has an additional term  
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should be a concern. Fortunately, choosing  

u
xt ∆

=∆
φ

  

will also make this coefficient null.  

Again, the counter-error mechanism can be used to 
reduce numerical dispersion due to these additional 
terms that are created during discretization of Eq. (1). 
Subtracting these error-causing terms from Eq. (1) 
results in: 

2

22

2 x
CtuxuD

x
Cu

t
C

∂
∂








 ∆−∆
−+

∂
∂

−=
∂
∂

φ
φφ  

3

3

2

232

66 x
CtutuDxu

∂
∂








 ∆
+

∆
+

∆
−−

φφ
 

4

4

2

2222

2212 x
CtDutDxD

∂
∂








 ∆
−

∆
−

∆
−

φφ
 

6

6

2

23

5

5

2

22

62 x
CtD

x
CtuD

∂
∂








 ∆
−−

∂
∂








 ∆
−

φφ
     ..(11) 

which is the equation to be discretized with 
minimum numerical dispersion. To simplify the 
equation, let  
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Equation (11) may be rewritten as: 
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Using the backward difference method, the 
concentration may be explicitly formulated as: 
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For easy formulation, the coefficients in the ∗C  

expressions may be given by the Pascol’s Triangle: 

   Point     

Time 
(n): i-3 i-2 i-1 i i+1 i+2 i+3 

1   -1 1    

2   1 -2 1   

3  -1 3 -3 1   

4  1 -4 6 -4 1  

5 -1 5 -10 10 -5 1  

6 1 -6 15 -20 15 -6 1 

 

 

Testing Criteria 

The new methods were tested using three criteria: 1) 
numerical stability, 2) truncation error, and (3) front 
slope. 

Numerical Stability. Wang23 shows that the finite 
difference approximation of first-order accuracy 
shown in Equation (5) is stable for  
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For the finite difference approximations of second- 
and third-order accuracies represented by Eqs. (9) 
and (13), the stability is apparently governed by the 

value of 2α . The condition of stability for these two 
formulations may be expressed as: 
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Dividing Equation (16) by Equation (14) gives the 
ratio of the maximum stable timestep size for finite 
difference approximation of first-order accuracy to 
that for the finite difference approximations of 
second- and third-order accuracies as 
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This relation indicates that the maximum stable 
timestep size for the second- and third-order accuracy 
formulations is larger than that for the first-order 

accuracy formulation by 
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Truncation Error. Comparison of Equation (1) and 
Equation (7) indicates that the truncation error given 
by the second-order accuracy formulation can be 
expressed as 
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where the α’s are those for the second-order accuracy 
formulation. 

Comparison of Equation (1) and Equation (11) 
indicates that the truncation error given by the third-
order accuracy formulation can be expressed as 
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where the α’s are those for the third-order accuracy 
formulation. Although the second- and third-order 
accuracy formulations are stable with uxt /∆≤∆ φ , 
according to Equations. (20) and (21), decreasing ∆t in 
the stable range may cause truncation error to 
increase. Therefore, a factor called Dispersion Factor 
(DF) is introduced into the analysis. The DF is defined 
as  

tuxDF ∆∆= /)/(φ          …………………..(22) 
When DF = 1, one should obtain the stable scheme 
with minimum truncation error, which gives the least 
numerical dispersion effect. When DF < 1, the scheme 
is unstable. With values of DF being greater than unity, 
numerical dispersion increases.  

Front Slope. Frontal behavior was evaluated with a 
parameter called front slope (FS) in this study. It is 
defined as: 
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Results and Discussion 

The derived second- and third-order accuracy 
formulations modified with the counter-error 
mechanism were tested in this study. This section 
presents results of testing in terms of numerical 
stability, truncation error, and front sharpening 
effect. 

Numerical Stability. The following parameter 
values were used in the testing: 

Length of porous medium:                   L = 1,000 cm 
Porosity:                              φ = 0.30 
Convective velocity:        u = 0.05 cm/s 
Physical diffusivity coefficient:      D = 0.1 cm2/s 
Grid block length:           ∆x = 10 cm 
Total injection time:      tinj = 0.20 pore volume 

Fig. 1 presents a calculated concentration profile 
with the first-order accuracy approximation, i.e., 
Equation (5), using ∆t = 43.5 seconds. It clearly 
indicates that the numerical instability has developed.  
Fig. 2 shows a calculated concentration profile with 
the first–order accuracy approximation using ∆t = 42 
seconds. It clearly demonstrates that the numerical 
algorithm was stable. The total CPU time consumed 
for the stable computation case is 3.5 seconds with 
the author’s Pentium 4 PC. Thus the maximum 
stable timestep size for the first–order accuracy 
approximation may be between 42 seconds and 43.5 
seconds (average 42.75 seconds). The analytical 
expression of the maximum stable timestep size for 
the first–order accuracy approximation, i.e., 
Equation (3), gives: 

( ) 86.42
)10)(05.0()1.0(2

)3.0()10(
2

22

=
+

=
∆+

∆
=∆

xuD
xt φ

 seconds 
which is very consistent with the numerical result of 
42.75 seconds.  
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Fig. 1 – Concentration profile given by the first-order formulation for ∆t = 43.5 seconds 
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 Fig. 2 – Concentration profile given by the first-order formulation for ∆t = 42 seconds 

 

Fig. 3 shows a calculated concentration profile with 
the third-order accuracy approximation, i.e., Equation 
(13), using ∆t = 72 seconds. It clearly indicates that the 
numerical instability has developed.  Fig. 4 shows a 
calculated concentration profile with the third–order 
accuracy approximation using ∆t = 63 seconds. It 
clearly demonstrates that the numerical algorithm was 
stable. The total CPU time consumed for the stable 
computation case is 2.2 seconds with the author’s 
Pentium 4 PC. Thus the maximum stable time step size 
for the third-order accuracy approximation may be 
between 63 seconds and 72 seconds (average 67.5 

seconds). The analytical expression of the maximum 
stable time step size for the third-order accuracy 
approximation, i.e., Equation (16), gives: 

)05.0(
)3.0)(10(

=
∆

=∆
u
xt φ  = 60 seconds 

which is close to the numerical result of 67.5 
seconds. 
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 Fig. 3 – Concentration profile given by the third-order formulation for ∆t = 72 seconds 
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Fig. 4 – Concentration profile given by the third-order formulation for ∆t = 63 seconds 

 

Based on the numerical results, the timestep size 
improvement (∆timp) with the third-order accuracy 
approximation over the first-order accuracy 
approximation is 

75.42
5.67

=∆ impt  = 1.52 fold. 

The theoretical improvement can be calculated with 
Equation (18) as 

( )
( ) )10)(05.0(

)1.0(2121
1

3,2 +=
∆

+=
∆

∆

xu
D

t
t

 = 1.4 fold 

which is consistent with, but on the safe side of, the 
numerical result of 1.52 fold. This is consistent with 
the CPU time reduction of being from 3.5 seconds to 
2.2 seconds. 

Truncation Error. Truncation error for the 
formulation of the third-order was calculated with 
Equation (21) and the following parameter values: 
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Length of porous medium:               L = 1,000 cm 
Porosity:                  φ = 0.30 
Convective velocity:              u = 1 cm/s 
Physical diffusivity coefficient:     D = 0.01 cm2/s 
Total injection time:                tinj = 0.20 pore volume 

Grid block size ∆x and time step size ∆t were used as 
sensitizing parameters. Fig. 5 presents a plot of 
calculated truncation error against grid block size 
with ∆t = 0.75 second. It shows that the truncation 
error increases with grid block size, so we have to 
pay attention to the selection of grid block size. 
Fig. 6 shows a plot of calculated truncation error 
against time step size with ∆x = 10 cm. It shows that 
the truncation error decreases with time step size. 

Here we noticed that whether the truncation error is 
positive or negative depends on several parameter 
values such as time step size and diffusion coefficient.  

Frontal Slope. The following data were used for 
evaluating the behavior of the displacing front: 

Length of porous medium:                    L = 1,000 cm 
Porosity:    φ = 0.30 
Convective velocity:            u = 1 cm/s 
Physical diffusivity coefficient:    D = 0.001, 0.01, 0.1, 1 
cm2/s 
Grid block length:          ∆x = 10 cm 
Time step size:     ∆t = 1.5 second 
Total injection time:      tinj = 0.20 pore volume 
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Fig. 5 – Truncation error given by the third-order formulation for ∆t = 0.75 seconds 
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Fig. 6 – Truncation error given by the third-order formulation for ∆x =10 cm 
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Figs. 7 and 8 show calculated concentration 
profiles near the displacing front for ∆t = 1.5 second 
and different diffusion coefficient values.  These 
figures demonstrate that the formulations with 
second– and third–order accuracies calculate 

displacing fronts that are much steeper than that 
given by the formulation with first–order accuracy. 
They also indicate that the formulations with second– 
and third–order accuracies yield similar displacing 
fronts. 
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 Fig. 7 – Concentration profiles for ∆t = 1.5 seconds, D = 1 cm2/s 
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Fig. 8 – Concentration profiles for ∆t = 1.5 seconds, D =0. 1 cm2/s 

 

 



e-journal of reservoir engineering  http://petroleumjournals.com 

 Page 12 of 14 
(page number not for citation purposes) 

Fig. 9 plots the frontal slopes versus timestep size 
for the concentration profiles. It indicates that the 
frontal slope increases with timestep size for all the 
formulations. This is expected because use of small 
timestep size creates more numerical dispersion. 
Moreover, it is noticed that the curve presenting the 
first-order accuracy approximation stops between 
1.875 seconds and 2.25 seconds; that is because of 
the numerical dispersion developed during that 
period. This further demonstrates that the high-

order approximations are much better than the first-
order approximation in this aspect. 

Fig. 10 illustrates the frontal slopes versus diffusion 
coefficient for the same concentration profiles. It 
demonstrates that the frontal slope decreases with 
diffusion coefficient for all the formulations. This is also 
expected because the diffusion coefficient creates 
more molecular diffusion. 
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Fig. 9 – Frontal slope for D = 1 cm2/s 
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Fig. 10 – Frontal slope for ∆t = 1.5 second 
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Conclusions 

Finite difference formulations with second- and 
third-order accuracies have been developed and 
modified with a counter-error mechanism in this 
investigation. Numerical testing allows the following 
conclusions to be drawn: 

The second- and third-order accuracy finite 
difference formulations are numerically stable for 
time step size  

u
xt φ∆

≤∆ ,  

which is  









∆
+

xu
D21   

times the maximum stable-timestep size for the first-
order accuracy finite difference formulation. This 
mean that use of the second- and third-order 
accuracy finite difference formulations will speed up 
numerical reservoir simulation by  









∆
+

xu
D21  times. 

Numerical diffusion and dispersion can be minimized 
using the second- and third-order accuracy finite 
difference formulations with time step size  

.
u
xt φ∆

=∆   

Numerical dispersion due to truncation error 
increases with grid block size and decreases with 
timestep size. 

The second- and third-order accuracy finite 
difference formulations retain the sharp displacing 
front controlled by the physical diffusion 
coefficient D. 
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Nomenclature 

Ci
n  = concentration at point i, time n 

C*  = finite difference combined constant 
D  = diffusion coefficient, cm2/s 
n  = a general level of time spots 
tinj  = pore volume injected, fraction 
t  = coordinate of time in 1-D flow, s 
∆t  = length of timestep, s 
u  = convective rate, cm/s 
x  = coordinate of location in 1-D flow, cm 
xi  = location of point i 
xk  = location of point k 
∆x  = grid block length in x direction, cm 
 

Greek Symbols 
 
α  = Constant in discretization equation. 
φ   = Porosity of porous medium.  
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